
Dr.M.Sivasankari earned her Ph.D degree in Computer Science from MS

University, Tirunelveli. She was a meritorious student both in academics and non

academics during her college days and she won a number of prizes and medals in

competitions conducted inside and outside of the college.

On top of that she is a Hat-trick World Record Holder with 40 different awards. She completed

her M.Phil (Computer Science) at St.Xavier's College, Palayamkottai, Tirunelveli and M.Sc

(Computer Science) & B.Sc (Computer Science) at G.Venkataswamy Naidu College, Kovilpatti.

She is currently working as an Assistant Professor of Computer Applications at Don Bosco

College of Arts and Science, Keela Eral. She has been actively playing a vital role in organizing

State, National, International level Competitions for the college. She has been honored and

felicitated in many occasions. She is being invited as a Resource Person for many programs

related to her discipline. She is an orator. She has published a number of technical papers at

National & International Conferences.

ISBN

No.

P
L
U

N
G

E

IN

T
O

P
H

P
 -

D
r.

 M
.

S
IV

A
S

A
N

K
A

R
I

A TEXT BOOK OF

PLUNGE INTO PHP

B.E. / B.Tech. STUDENTS

As Per Anna University Syllabus

(Computer Science and Engineering) - Regulation – 2017

B.Sc(CS) / B.Sc(IT) / BCA

Manonmaniam Sundaranar University Syllabus

Dr. M. SIVASANKARI

Assistant Professor, Department of Computer Applications

Don Bosco College of Arts and Science,

Keela Eral.

To the Author

All rights reserved to the publisher. No part of this book shall be

reproduced in any form photocopy or otherwise, without the written permission of

the publisher.

First Edition : November 2020

ISBN No. :

Price : Rs.

Publishers

Dr. M. Sivasankari

Assistant Professor, Department of Computer Applications

Don Bosco College of Arts and Science,

Keela Eral.

Contact for Copies:

Printed By :

M/s. Vinayaga Traders, 330-A, PKSA Arumugam Road,

Sivakasi- 626 189, Cell : 9486357318

PHP

ABOUT THE AUTHOR

Dr.M.Sivasankari earned her Ph.D degree in Computer Science

from MS University, Tirunelveli. She was a meritorious student both in

academics and non academics during her college days and she won a

number of prizes and medals in competitions conducted inside and outside

of the college. On top of that she is a Hat-trick Guinness World Record

Holder with 40 different awards. She completed her M.Phil(Computer

Science) at St.Xavier’s College, Palayamkottai, Tirunelveli and M.Sc

(Computer Science) & B.Sc (Computer Science) at G.Venkataswamy

Naidu College, Kovilpatti. She is currently working as an Assistant

Professor of Computer Applications at Don Bosco College of Arts and

Science, Keela Eral. She has been actively playing a vital role in organizing

State, National, International level programmes for the college. She has

been honored and felicitated in many occasions. She is being invited as a

Resource Person for many programs related to her discipline. She’s an

orator. She has published a number of technical papers at National &

International Conferences.

Dr.M.Sivasankari

PREFACE

This book is intended for beginners, intermediate level and for all

those who want to learn or expand their knowledge in Php Program. A

systematic approach has been followed from the beginning to the end. Most

of the concepts of Php language are explained in detail with practical

applications. Solved programs have also been provided to help the learners

to master the programming language.

A simple approach is used to understand the various concepts of

Php language. Each Program is thoroughly explained and output is also

shown. Each and every program given in the book is perfectly working.

These exercises are meant to test your skills & understanding for

solving the problems. If you study this book in a right spirit, you will

become an expert in Php Programming. Best of Luck!

Utmost care has been taken to write the book in order to make it

free of errors. However, if you come across any error, you can feel free to

contact me. Your suggestions & feedback may kindly be sent to the

following maid id - mvsivasankari@gmail.com.

Dr. M. SIVASANKARI

ACKNOWLEDGEMENT

I would like to thank all those who have encouraged me to write the

book.

I express my deep sense of gratitude to my Professor

Dr. A. Ranichitra, Assistant Professor of Computer Science for her

thorough review of every topic discussed in the book. It was of great help

in improving this book.

I dedicate this book to my family and I wholeheartedly thank them

for their patience & support extended to me all the times.

FOREWORD

Dr.A.Ranichitra

Assistant Professor,

Department of Computer Science,

Sri S.Ramasamy Naidu Memorial College, Sattur

The book “Programming with PHP and MYSQL”is Great for

beginners and the learners new to PHP. The writer starts with the basics of

the language. This helps the beginner to catch up quickly and then goes

step by step on how PHP works. This book allows the learners to start with

the easy stuff like how to create and run simple PHP scripts, which helps to

modify web pages. It covers all the basics of the language with simple

examples for each concept. Complex concepts are broken down into

simple steps to ensure that the learner can easily master PHP. Concepts are

presented in a "to-the-point" style to cater to the busy individual. Topics are

carefully selected to give broad exposure to PHP. Working through the

programs gives a chance to see how everything works. The Leaner will be

able to use PHP to interact with the database and the server.

Best Wishes and Congratulations to the Writer in bringing the

concept to reach every learner.

(Dr A.RANICHITRA)

CONTENTS

Unit No. Topics Page No.

Unit 1. Introduction 2 – 20

Unit 2 Using Arrays and Custom Functions 21 – 35

Unit 3 File Handling Functions 36 – 49

Unit 4 MySQL 50 – 101

Unit 5 Using MySQL and PHP Together 102 – 154

Dr. M. Sivasankari – PLUNGE INTO PHP

1

PROGRAMMING WITH PHP & MY SQL

UNIT-1

Introduction: introduction-open source PHP- PHP History- features-

variables, statements operators, conditional statements- if- switch – nesting

conditional- merging forms with conditional statements- loop- while- do-

for-loop iteration with break and continue.

UNIT-2

Arrays and function: Arrays: creating an array- modifying array- processing

array- grouping form with arrays- using array function creating user

defined functions- using files- sessions cookies- executing external

programs- creating sample application using PHP.

UNIT-3

File handling opening files using fopen- looping over file content with feof-

reading text from a file using fgets - closing a file– reading character with

fgets-reading whole file with file- get- content reading a file into an array

with file. Check if a file exists- fscanf parse int- file- getting file

information with stat- writing to a file- reading and writing binary files-

locking files.

UNIT-4 : MYSQL

Effectiveness of MY SQL-MY SQL data types- creating and manipulation

insertion-Updation and deletion of rows in tables- retrieved data –

advanced data filtering data manipulation function- aggregate function –

grouping data- sub queries - joining tables – set operators- full text

searches.

UNIT-5 : PHP WITH MYSQL:

Working is MY SQL with PHP-database connectivity usage of MY SQL

commands in PHP processing results. Sets of queries- handling errors-

debugging and notice functions validating user input through data base

layer and application layer- formatting query output with character-

numeric-Data and time – sample data base applications.

Dr. M.Sivasankari – PLUNGE INTO PHP

2

UNIT 01

INTRODUCTION

 Introduction to PHP

 PHP is an acronym for ―PHP- Hyper Text Pre-processor‖(earlier

called Personal Home Page)

 PHP is a widely-used,open source scripting language.

 PHP is an HTML- embedded, server- side scripting language which

is designed for web development

 It is also used as a general-purpose programming language.

 It was created by Rasmus Lerdorf in 1994& appeared in the market

in 1995

 PHP/FI 2.0 & in turn quickly supplanted in 1997

 PHP 3.0 developed by Andi Gutmans & Zeev Suraski

 It was a complete rewrite of the original PHP/FI implementation

 PHP 4.0 was released in 2003.

SYNTAX

<?php

Code

?>

HTML- Hyper Text Mark-up language.

Example

<html>

,body>

<h1> My first PHP Page</h1>

<?php

echo ‗ Hello World!‘;

?>

 Output

 Hello World!

</body>

</html>

Dr. M. Sivasankari – PLUNGE INTO PHP

3

 Features of PHP

There are many features given by PHP. All features discussed

below one by one.

Familiarity

If you are in programming background then you can easily

understand the PHP syntax. And you can write PHP script because of most

of PHP syntax inherited from other languages like C or Pascal.

Simplicity

PHP provides a lot of pre-define functions to secure your data. It is

also compatible with many third- party applications, and PHP can easily

integrate with other. In PHP script there is no need to include libraries like

c, special compilation directives like Java, PHP engine starts execution

from(<?) escape sequence and end with a closing escape sequence(?>). In

PHP script, there is no need to write main function. And also, you can work

with PHP without creating a class.

Efficiency

PHP 4.0 introduced resource allocation mechanisms and more

pronounced support for object- oriented programming, in addition to

session management features. It‗s eliminating unnecessary memory

allocation.

Security

Several trusted data encryption options are supported in PHP‗s

predefined function set. You can use a lot of third-party applications to

secure our data, allowing for securing our application.

Flexibility

We can say that PHP is a very flexible language because of PHP is

an embedded language you can embed PHP scripts with HTML, JAVA

SCRIPT, WML, ML and many others. You can run your PHP Script any

device like mobile phones, tabs, laptops, PC and other because of PHP

script execute on the server then after sending to the browser of your

device.

Dr. M.Sivasankari – PLUNGE INTO PHP

4

Open Source

PHP is an open source programming language so you can download

freely there is no need to buy a licence or anything.

Object Oriented

PHP has added some object-oriented programming features, and

object-oriented programming became possible with PHP 4. With the

introduction of PHP 5, the PHP developers have really beefed up the

object-oriented features of PHP, resulting in both more speed and added

features.

 Embedding PHP in HTML

 PHP lets your embed commands in regular HTML pages.

 These embedded PHP commands are enclosing within special start

& and tags which are read by the interpreter when it parses the

page.

Note: Parses- to divide & identify the parts & their relations to each other.

Example

<?php

... PHP code....

?>

->PHP &HTML can be combined

<html>

<head><base font face =‖Arial‖></head>

<body>

<h2>Hi,we are the seniors </h2>

<?php

//printout output

echo‗<h2><i> we are intelligent student </i></h2>‗;

?>

</body>

</html>

 WRITING STATEMENTS & COMMANDS

 A PHP script consists of one or more statements echo statement

ending in a semicolon

 Black lines & outside the tags are ignored by the parses

 Only the code between the tags is read & executed.

Example

Dr. M. Sivasankari – PLUNGE INTO PHP

5

<? php

?>

//this is single line command

/* & this is multiline command*/

 STORING VALUES IN VARIABLES

 Variables are the building blocks of any programming language.

 Variables are containersfor storing information.

 PHP supports a number of different variables types.

-Boolean

-Integers

-Floating point numbers

-Strings

-Arrays

-Objects

-Resources

-Nulls

 Declaring (Creating) PHP Variables
In PHP, a variable starts with the $ sign, followed by the name of the

variable.

Rules for PHP Variables

 A variable starts with the $sign, followed by the name of the

variable.

 A variable name must start with a letter or the underscore character.

 A variable name cannot start with a number.

 A variable name can only contain alphanumeric characters and

underscores (A-Z,a-z,0-9 and_)

 Variable names are case-sensitive ($age and $AGE are the two

different variables)

Example

$income, $day

Example

<html>

<head><base font face=‘Arial‘></head>

<body>

<h3>This is variable</h3>

<?php

Dr. M.Sivasankari – PLUNGE INTO PHP

6

Output

$answer =‘Hai‘;

echo $answer;

?>

</body>

</html>

This is variable
Hai

 ASSIGNING & USING VARIABLES

 To assign a value to a variable use the assignment operator the

equality (=) simple.

 This operator assigns a value (the right side of the equation) to a variable

(the left side).

 To use a variable value in our script, simply call the variable by name, and

PHP will substitute its value at run time.

Example

<?php

?>

Output

$today=‘June 27 2018‘;

echo ‗ today is $ today‘;

Today is June 27 2018

 Saving Form Input in Variables

 Forms have always been one of the quickest and easiest ways to add

interactivity to your web site.

 PHP can simplify the task of processing web-based forms

substantially, by providing a simple mechanism to read user data

submitted through a form into PHP variables.

Example

Consider the following sample form:

<html>

<head></head>

<body>

<form action="message.php" method="post">

Enter your message: <input type="text" name="msg" size="30">

<input type="submit" value="Send">

Dr. M. Sivasankari – PLUNGE INTO PHP

7

</form>

</body>

</html>

 Detecting the Data Type of a Variable

 Variables can store data of different types, and different data types

can do different things.

 PHP offers the gettype() function, which accepts a variable or value

as argument.

 PHP supports the following data types

 PHP String

A String is a sequence of characters like ―Hello ―World‖. A string

can be any text inside quotes. We can use single or double quotes.

Example

<?php

$x= ‗Hello World!‘;

echo $x;

?>

 PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and

2,147,483,647.

Example

<?php

Output

5985

$x=5985;

echo $x;

?>

Dr. M.Sivasankari – PLUNGE INTO PHP

8

 PHP Float

A float (floating point number) is a number with a decimal point or

a number in exponential form.

Example

<?php

?>

Explanation

$x= ―10.56‖;

var_dump($x);

In the following example $x is a float. The PHP var_dump()

function returns the data type and value.

 PHP Boolean

 A Boolean represents two possible states: TRUE or FALSE.

 Booleans are often used in conditional testing.

$x= true;

$y=false;

 PHP Object

 An object is a data type which stores data and information on how

to process that data.

 In PHP, an object must be explicitly declared.

 First, we must declare a class of object. For this we use the class

keyword.

Example

<?php

class car {

function car() {

$this->model=‘BMW‘;

}

}

//create an object

$herbie = new car();

// show object ptoperties

Dr. M. Sivasankari – PLUNGE INTO PHP

9

echo $herbie->model;

?>

 PHP NULL value

Null is a special data type which can have only one value: NULL

A variable of data type NULL is a variable that has no value assigned to it.

Example

<?php

$x=‘Hello World‘;

$x=null;

var_dump($x);

?>

PHP also supports a number of specialized functions to check if a variable

or value belongs to a specific type.

FUNCTION WHAT IT DOES

Is-bool() Checks if a variable or value is boolean

Is-strings() Checks if a variable or value string

Is-number() Check is a variable or value is a numeric string

Is-float() Checks if a variable or value is a floating point number

Is-int() Checks if a variables or value is an integer

Is-null Check if a variables is an array

Is-objects() Checks if a variable is an objects

Example

The following example illustrates this:

<?php

// define variables

$auth = true;

$age = 27;

$name = 'Bobby';

$temp = 98.6;

// returns "string"

Dr. M.Sivasankari – PLUNGE INTO PHP

10

echo gettype($name);

// returns "boolean"

echo gettype($auth);

// returns "integer"

echo gettype($age);

// returns "double"

echo gettype($temp);

?>

 A NOTE ON STRINGS VALUES

String values enclosed in double quotes are automatically parsed for

variable names;if variable names are found, they are automatically replaced

with the appropriatevariable value.

Example

<? php

?>

Output

$identity =‘JamesBond‘;

$car=‘BMW‘;

$sentence=‘$identity drives a $car‘;

echo $sentence;

James Bond drives a BMW

 OPERATORS

 Operators are the glue that let you do something useful with them.

 Operators are used to perform operations on variables and values.

 PHP comes with over 15 operators including operators for

*Assignment

*Arithmetic

*String

*Comparison

*logical operators

Dr. M. Sivasankari – PLUNGE INTO PHP

11

 ARITHMETIC OPERATORS

 The PHP arithmetic operators are used with numeric values to

perform common arithmetical operations such as addition,

subtraction, multiplication, division etc.

 To perform mathematical operations on variables, use the standard

arithmetic operators.

Example

<?php

?>

$num1=101;

$num2=5;

$sum=$num1+$num2;

$sub=$num1-$num2;

$multiply=$num1*$num2;

$divide=$num1/$num2;

$module=$num1%$num2;

 USING STRING OPERATORS

To add strings together use the string concatenation operators

represents by a period(.).

Example

<?php

$str1=‗John‗;

$str2=‗example.com‗;

$email=$str1‗@‗:$str2;

?>

 USING COMPARISON OPERATOR
 The PHP comparison operators are used to compare two values (number

or string)

 To test whether two variables are different use anyone of PHP‗s

many comparison operators.

Example

<?php

$mean=29;

$median=40;

$mode=29;

$result= ($mean<$median);

$result= ($mean>$median);

$result= ($mean<=$mode);

Dr. M.Sivasankari – PLUNGE INTO PHP

12

$result= ($mean==$mean);

$result= ($mean!=$mode);

?>

 THE = = = OPERATOR

An important comparison operator in PHP 4.0 is the === operator

which enable you to test both for equality & type.

Example

<?php

// define two variables

$str = '14';

$int = 14;

// returns true

// since both variables contain the same value

$result = ($str == $int);

// returns false

// since the variables are not of the same type

// even though they have the same value

$result = ($str === $int);

?>

 USING LOGICAL OPERATORS

 The PHP logical operators are used to combine conditional

statements.

 To linking together related conditions in a simple & elegant manner

use one of PHP‗s four logical operators.

Example

<?php

*logical AND

*logical OR

*logical NOT

*logical XOR

$user =‗joe‗;

$pars =‗try m3‗;

$save =1;

$status =1;

$result = ($user ==‗joe‗) && ($pars ==‘try m3‗);

Dr. M. Sivasankari – PLUNGE INTO PHP

13

Syntax

<?php

if (conditional test)

{

do this;

}

?>

$result =! ($save ==1);

?>

 AUTO-INCREMENT AND AUTO DECREMENT OPERATOR

 The auto-increment operator is a PHP operator designed to

automatically increment the value of variables it an attached to by.

It is represented by addition symbol.

 The PHP decrement operators are used to decrement a variable‗s

value.

Example

<?php

?>

$total =10;

$total++;

 ADDING DECISION WITH CONDITIONAL STATEMENTS

A conditional enables you to test whether a specific condition is true

or false and to perform different actions on the basic‗s types of conditional

statements both which are discussed with the following sections.

 USING THE IF () STATEMENT

In PHP, the simplest form of conditional statement is the if()

statement, which looks like this:

Example

<?php

if ($temp >= 100)

{

echo 'Very hot!';

Dr. M.Sivasankari – PLUNGE INTO PHP

14

}

?>

Explanation

The argument to if() here is a conditional expression, which

evaluates toeither true or false. If the statement evaluates to true, all PHP

code within the curlybraces is executed; if not, the code within the curly

braces is skipped and the linesfollowing the if() construct are executed.

 IF ELSE STATEMENT

PHP also offers the if-else() construct, used to define an alternate

block of code that gets executed when the conditional expression in the if()

statement evaluates as false. This is good for ―either-or‖ situations, as

illustrated in the following:

 IF-ELSEIF-ELSE () STATEMENT

PHP also provide you with a way of handling multiple possibilities

the if-else if- else () construct. This construct consists listing a number of

possible result one after another and specifying the action to be taken for

each.

Example

<?php

if ($temp >= 100)

{

echo 'Very hot!';

}

else

{

echo 'Within

limits';

}

?>

Syntax

<?php

if (conditional test)

{

do this;

}

else

{

do this;

}

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

15

The if-elseif-else () control structure assigns a different value to the $capital

variable, depending on the country code. As soon as one of the if()

branches within the block is found to be true, PHP will execute the

corresponding code, skip the remaining if() statements in the block, and

jump immediately to the lines following the entire if-elseif-else() block.

 USING THE SWITCH () STATEMENT

 The switch statement is used to perform different actions based on

different conditions.

 Use the switch statement to select one of many blocks of code to be

executed.

 Here a switch () statement evaluate a conditional expressions or

decision variables depending on the result of the evaluation an

appropriate case () instead.

 If no matches can be found a default block is executed instead.

Syntax

<? php

Example

<?php

if ($country == 'UK')

{

$capital = 'London';

}

elseif ($country == 'US')

{

$capital = 'Washington';

}

elseif ($country == 'FR')

{

$capital = 'Paris';

}

else

{

$capital = 'Unknown';

}

?>

Syntax

<?php

if (conditional test #1)

{

do this;

}

elseif (conditional test #2)

{

do this;

}

...

elseif (conditional test #n)

{

do this;

}

else

{

do this;

}

?>

Dr. M.Sivasankari – PLUNGE INTO PHP

16

switch (conditional variable)

{

case label 1:

do this;// code to be executed if n=label1;

break;

case label2:

do this; // code to be executed if n=label2;

break;

case label n:

do this; // code to be executed if n=label n;

break;

……

default:

code to be executed if n is different from all

labels;

}

?>

Example

<? php

switch ($country)

{

case ‗UK‗:

$capital =‗London‗;

break;

case ‗US‗:

$capital =‗washing ton‗;

break;

default:

$capital =‗unknown‗;

}

?>

 TERNARY OPERATOR

 Ternary Operator can perform the same operation in a single line as

compared to conditional statement which uses multiple lines.

Therefore, it reduces the length of your code.

 In ternary operator, if condition statement is true then statement 1

will execute otherwise statement 2 will execute.

Syntax

(condition)?(statement1):(statement2);

Example

Dr. M. Sivasankari – PLUNGE INTO PHP

17

<?php$msg =$dial count> 10? Cannot connect after 10 attempts:

‗Dialing...‗;?>

 NESTING CONDITIONAL STATEMENT

To handle multiple conditions, you can ―nest‖ conditional

statements inside each other.

Example

<?php

if ($country ==‗INDIA‗)

{

if (state ==‗Maharashtra‗)

{

if (city =‗Mumbai‗)

{

$home =true;

}

}

}

?>

 REPEATING LOCATION WITH LOOP

Loops are used to execute the same block of code again and again,

as long as a certain condition is true.

 WHILE () LOOP

 The while loop executes a block of code as long as the specified

condition is true.

 The conditional expression specified evaluates to true, the loop will

continue to execute.

 When the conditional becomes false the loop will be broken.

Syntax
<? php

while (condition is true)

{

do this;// code to be executed

}

?>

Dr. M.Sivasankari – PLUNGE INTO PHP

18

Example

<?php

$num =11;

$upper limit =10;

$lower limit =1;

while ($lower limit <= $upper limit)

{

echo ―$num X $lower limit =‖, ($num*$lower limit);

$lower limit++;

}

?>

 DO () LOOP

The do…while loop will always execute the block of code once, it

will then check the condition, and repeat the loop while the specified

condition is true.

Syntax

<? php

do

{

do this; // code to be executed;

}while (condition is true);

?>

Example

<?php

$num =11;

$UL =10;

$LL =12;

do

{

echo ―$num X $LL =‖, ($num + $LL);

$LL++;

}

while ($LL <= $UL);

?>

 FOR LOOP ()

 PHP offers for loop is used when you know in advance how many

times the script should run.

Parameters

 Initialized counter –Initialize the loop counter value.

Dr. M. Sivasankari – PLUNGE INTO PHP

19

 Conditional test – Evaluated for each loop iteration. If it evaluates

to TRUE, the loop continues. If it evaluates to FALSE, the loop

ends.

 Increment/Decrement Counter – increases the loop counter value.

Syntax
<? php

for (initialized counter; conditional test; Increment/Decrement

counter);

{

}

?>

Example

<?php

do this;

for ($ x=0; $x<=10; $x++)

{

echo ‗ the number is: $x
‘;

}

?>

 CONTROLLING LOOP ITERATION WITH BREAK AND

CONTINUE

a. break

 The break keyword is used to exit a loop when it encounters an

unexpected situation.

 It is advisable to check the division and use the break statement to

exit the loop as soon as it becomes equal to zero.

Example

<?php

for ($x=-10; $x<=10; $x++)

{

if ($x == 0) { break; }

echo '100 / ' . $x . ' = ' . (100/$x);

}

?>

Dr. M.Sivasankari – PLUNGE INTO PHP

20

b. Continue

 The continue keyword is used to skip a particular iteration of the

loop and move to the next iteration immediately.

 This statement can be used to make the execution of the code within

the loop block dependent on particular circumstances.

Example

<?php

for ($x=10; $x<=100; $x++)

{

if (($x % 12) == 0)

{

}

else

{

}

}

?>

echo "$x ";

continue;

- - - - - -

Dr. M. Sivasankari – PLUNGE INTO PHP

21

UNIT 02

USING ARRAYS AND CUSTOM FUNCTIONS

 Definition of Array

 An array is complex variable that enables variables, if comes in

handy when you need to store and represent can best be thought of

as ―container‖ variable, which can contain one or more values.

 An array stores multiple values in one single variable.

Syntax

array();

Example

<? php

$flavour = array (‗strawberry‗, ‗grape‗, ‗vanilla‗, ‗caramel‗,

‗chocolate‗);

?>

 an array alternative way to define an array

Example

<?php

?>

$flavours [0] = ‗strawberry‗;

$flavours [1] = ‗grape‗;

$flavours [2] = ‗vanilla‗;

$flavours [3] = ‗caramel‗;

$flavours [4] = ‗chocolate‗;

 MODIFYING ARRAY ELEMENTS

To add an element to an array assigns a value using the next

available index number or key.

Example

<?php

$flavours [5] = ‗Mango‗;

$flavours [] = ‗Mango‗;

Dr. M.Sivasankari – PLUNGE INTO PHP

22

$fruits [‗pink‗] = ‗peach‗;

?>

2.2.1. MODIFY AN ELEMENT OF AN ARRAY

To assign a value to the corresponding scalar variable if you wanted

to replaces ―flavour‖ strawberry with ―blue berry‖ in the flavours array

created previously script.

Example

We are use the following

<? php

$flavours [0] = ‗blue berry‗;

?>

 PROCESSING ARRAYS WITH LOOPS

To interactively process the data in a PHP array, loop over it using

any of the loop construct.

Example

<html>

<head></head>

<body>

Today's shopping list:

<?php

// define array

$shoppingList = array('eye of newt', 'wing of bat', 'tail of

frog');

// loop over it

// print array elements

for ($x = 0; $x <sizeof($shoppingList); $x++)

{

echo "$shoppingList[$x]";

}

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

23

</body>

</html>

 FOREACH () LOOP

 PHP 4.0 for the purpose of iterating over an array: the foreach ()

loop.

 This loop runs once for each element of the array, moving forward

through the array each element iteration on each run.

 The statements within the only braces are executed and the

currently selected array element is made available through a

temporary loop unlike a for () loop, a for each () loop. Does not

need a counter or a call to size of (); it keeps of its position in the

array automatically.

Example

<html>

<head><\head>

<body>

Today shopping list

<?php

//define array

$shopping list =array (‗eye of newt‗, ‗using of bat‗, ‗tail of frog‗);

//loop over it

foreach ($ shopping list a $ item)

echo ― $item‖;

?>

<\ul>

<\body>

<\html>

 CREATING USER DEFINED FUNCTIONS

Definition of Function

A function is simply a set of program statement that perform a

specific false and that can be called, or executed, from anywhere in your

program.

Besides the built-in PHP functions, it is possible to create your own

functions:

Dr. M.Sivasankari – PLUNGE INTO PHP

24

o A function is a block of statements that can be used repeatedly in a

program.

o A function will not execute automatically when a page loads.

o A function will be executed by a call to the function.

 DEFINING AND INVOKING FUNCTIONS

In PHP, functions are defined using the special function keyword.

This keyword is followed by the name of the function (which must

conform to the standard naming rules for variables in PHP), a list of

arguments (optional) in parentheses, and the function code itself,

enclosed in curly braces.

This function code can be any legal PHP code—it can contain loops,

conditional statements, or calls to other functions.

In the previous example, the function is named

displayShakespeareQuote() and only contains a call to PHP‗s

echo()function.

Calling a user-defined function is identical to calling a built-in PHP

function like size of() or die()—simply invoke it by using its name.

If the function is designed to accept input values, the values can be

passed to it during invocation in parentheses

Example

<?php

// define a function

function displayShakespeareQuote()

{

echo 'Some are born great, some achieve greatness, and some have

greatness thrust upon them';

}

// invoke a function

displayShakespeareQuote();

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

25

 USING ARGUMENTS AND RETURN VALUES

a. Arguments

It is possible to create functions that accept different values from the

main program and operate on these values to return different more pertinent

result on each invocation these values are called arguments and they add a

whole new level of power and flexibility to your code.

b. Return values

Usually, when a function is invoked, it generates a return value.

This return value is explicitly set within the function with the

return statement.

Example

<?php

// define a function

function getTriangleArea($base, $height)

{

$area = $base * $height * 0.5;

return $area;

}

// invoke a function

echo 'The area of a triangle with base 10 and height 50 is '

.getTriangleArea(10, 50);

?>

 Using Arrays with Argument Lists and Return Values
PHP fully supports passing arrays to functions in the argument list

and returning arrays from functions with the return statement.

Example

<?php

// define a function

// with a single-argument list

function addDomainToUsername($u, $d)

{

// create empty result array

$resultArray = array();

// process input array

// add domain to username and place in result array

Dr. M.Sivasankari – PLUNGE INTO PHP

26

foreach ($u as $element)

{

$resultArray[] = $element . '@' . $d;

}

// return result array

return $resultArray;

}

// define variables

$users = array('john', 'jim', 'harry');

// send array as argument to function

// receive result array

$newUsers = addDomainToUsername($users, 'guess.me.domain');

?>

 GLOBAL & LOCAL VARIABLES

a. LOCAL

The variables declared within a function are called local variables to

that function and has its scope only in that particular function.

b. GLOBAL

 The variables declared outside a function are called global

variables.

 A global variable can be accessed in any part of the program.

 To use a variable from the main program inside a function use the

GLOBAL keyword before the variables name inside the function

definition.

Example

<? php

$item =65;

$employee =125;

functionadditems ()

{

GLOBAL $item;

$item =$item+100;

}

function addemployee ()

Dr. M. Sivasankari – PLUNGE INTO PHP

27

{

$employee =$employee+2000;

}

additems ();

addemployee ();

?>

 USING FILES, SESSIONS COOKIES AND EXTERNAL

PROGRM

READING DATA FROM A FILE

 To begin with let consider the process of opening a file and reading

its contents.

 Create and run the following PHP script (remember to alter the

value of $file variables to an actual file on your system that is a

readable by the web server)

Example

<?php

// set file to read

$file = '/home/web/projects.txt';

// open file

$fh = fopen($file, 'r') or die('Could not open file!');

// read file contents

$data = fread($fh, filesize($file)) or die('Could not read file!');

// close file

fclose($fh);

// print file contents

echo $data;

?>

1. This file can be created with the fopen () function, which accepts

two arguments the name and path to the file and a string indicating

the mode in which the file us to be opened (r for read)

Dr. M.Sivasankari – PLUNGE INTO PHP

28

2. If the fopen() function is successful it returns a file handle $fn

which can be used for further information which the file fread()

functions, which read the file and places its contains into a variable

fread() is the number of bytes to be read you can usually obtain this

information.

3. Close the file once you‗re done with the file it a good idea to does it

with fclose().

 WRITING DATA OF A FILE

The steps involved in writing data to a file are almost identical to

those involved inreading it: open the file and obtain a file handle, use the

file handle to write data to it,and close the file. There are two differences:

1. You must fopen() the file in write mode ('w' for write).

2. Instead of using the fread() function to read from the file handle,

use thefwrite() function to write to it.

Example

<?php

// set file to write

$file = '/tmp/dummy.txt';

// open file

$fh = fopen($file, 'w') or die('Could not open file!');

// write to file

fwrite($fh, 'Hello, file!') or die('Could not write to file');

// close file

fclose($fh);

?>

 TESTING FILE ATTRIBUTES

PHP also comes with a bunch of functions that enable you to test the

status of a file.

Dr. M. Sivasankari – PLUNGE INTO PHP

29

This Table shows useful PHP file functions.

Function What It Does

file_exists()

is_dir()

is_file()

is_link()

is_executable()

is_readable()

is_writable()

filesize()

filemtime()

fileatime()

fileowner()

filegroup()

fileperms()

filetype()

Returns a Boolean indicating whether the file exists

Returns a Boolean indicating whether the specified

path is a directory

Returns a Boolean indicating whether the specified file

is a regular file

Returns a Boolean indicating whether the specified file

is a symbolic link

Returns a Boolean indicating whether the specified file

is executable

Returns a Boolean indicating whether the specified file

is readable

Returns a Boolean indicating whether the specified file

is writable

Gets file size, in bytes

Gets last modification time of file

Gets last access time of file

Gets file owner

Gets file group

Gets file permissions

Gets file type

Example

<?php

// set file

$file = $_GET['file'];

// check if file exists

echo file_exists($file) ? 'File exists' : 'File does not exist';

// check if file is executable

echo is_executable($file) ? 'File is executable' :'File is not

executable';

// check if file is readable

echo is_readable($file) ? 'File is readable' : 'File is not readable';

// check if file is writable

echo is_writable($file) ? 'File is writable' : 'File is not writable';

// print file size

echo 'File size is ' .filesize($file) . ' bytes';

Dr. M.Sivasankari – PLUNGE INTO PHP

30

// print file owner

echo 'File owner is ' .fileowner($file);

// print file type

echo 'File type is ' . filetype($file);

?>

 OBTAINING DIRECTORS LISTINGS

The task of iterating over one or moredirectories and processing the

file list within each.

To meet this requirement, PHPoffers a comprehensive set of directory

manipulation functions, which enabledevelopers to read and parse an entire

directory listing.

To demonstrate, consider the following simple example, which lists all the

filesin the directory /bin:

<?php

// initialize counter

$count = 0;

// set directory name

$dir = "/bin";

// open directory and parse file list

if (is_dir($dir))

{

if ($dh = opendir($dir))

{

// iterate over file list

// print filenames

while (($filename = readdir($dh)) !== false)

{

if (($filename != ".") && ($filename != ".."))

{

$count++;

echo $dir . "/" . $filename . "\n";

}

}

// close directory

closedir($dh);

}

}

echo "-- $count FILES FOUND --";

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

31

 Here, the opendir() function first retrieves a handle to the named

directory;this handle serves as the primary point of contact for all

subsequent operations.

 The readdir() function then uses the file handle to read the contents

of thedirectory, and return a list of file names one after another.

 The closedir() function is used to destroy the directory handle.

 CREATING A SESSION AND REGITERING SESSION

VARIABLES

SESSION

 A session is a global variable stored on the server

 Each session is assigned a unique ID which us used to retrieve

stored value.

 Session have the capacity to stored relatively large data compared to

cookies.

 The session values are automatically deleted when the browser is

closed.

In PHP the session_start () functions used to create a check session and

generate a session ID once a session has been created it becomes possible

to register any number of session variables which can store textual.

Example

<?php

// second page

// re-create the previous session

session_start();

// print the value of the session variable

// returns 'deathsbane'

echo $_SESSION['username'];

?>

 DESTROYING A SESSION

 To remove all global session variables and destroy the session,

usesession_unset() and session_destroy();

Dr. M.Sivasankari – PLUNGE INTO PHP

32

 To destroy an extant session—for example, on user logout—reset

the $_SESSIONarray, and then use the session_destroy() function to

erase session data.

Example

<?php

// re-create session

session_start();

// reset session array

$_SESSION = array();

// destroy session

session_destroy();

?>

 COOKIES

 A cookie is a small file with the maximum size of 4kb that the web

server store on the client computer. Each time the same computer

requests a page with a browser, it will send the cookie too.

 With PHP, you can both create and retrieve cookie values.

 A cookie created by a user can only be visible them.other users

cannot see its value

2.14.1 SETTING COOKIES

In PHP cookies are set with the setcookie() function which accepts

six arguments the cookie name its value its expiry data its path and domain

and a Boolean flag indicating its security status only the first argument is

required all the rest are optional. The set cookies () function return true if

successful by checking for this you can only verify if the cookie was sent to

the browser or not.

Syntax

setcookie(name, value, expire,path, domain,secure,httponly);

Only the name parameter is required. All other parameters are optional.

Dr. M. Sivasankari – PLUNGE INTO PHP

33

Example

<? php

$ref =setcookie (‗user name‗, ‗admin‗, mktime () +86400

‗/‗;

if (!$ref)

{

echo ―unable to set cookie‖;

}

?>

 RETRIEVING COOKIE DATA

Once cookie has been set for the domain it becomes available in the

special $cookie associated array and its value may be accessed using

standard array notation.

Example

<?php

if ($-COOKIE [‗user name‗])

echo ―welcome back, $-COOKIE [‗user name‗];

else

?>

echo ‗is this your first time here? Take our guided for! ‖;

 DELETING COOKIE

To delete a cookie, simply use setcookie() with its name to set the

cookie expiry date to value in the past.

Example

<?php

setcookie (‗user name‗, ‗null‗, mktime ()-10000, ‗/‗);

?>

 STORING DATA IN COOKIES

 Cookies allow web sites to store client-specific information in a file

on the clientsystem, and retrieve this information on an as-needed

basis.

 Cookies are typicallyused to bypass the stateless nature of the

HTTP protocol, by using the client‗sdisk as a storage area for

persistent data; however, they‗re dependent on the clientbrowser

being configured to accept cookies.

Dr. M.Sivasankari – PLUNGE INTO PHP

34

RULES

When dealing with cookies, you should be aware of some ground rules:

1. Because cookies are used to record information about your

activities ona particular site, they can only be read by the site that

created them.

2. A single domain cannot set more than 20 cookies, and each

cookie islimited to a maximum size of 4KB.

3. A cookie usually possesses five types of attributes. Table shows

the lists them.

4. Of all the five attributes, only the first is not optional.

Attribute What It Does

Name

Expires

path

domain

secure

Sets the name and value of the cookie

Sets the date and time at which the cookie expires

Sets the top-level directory on the domain from

which cookie data can be accessed.

Sets the domain for which the cookie is valid

Sets a Boolean flag indicating that the cookie

should be transmitted only over a secure

HTTPconnection

 DELETING WITH DATE AND TIMES

PHP comes with some fairly powerful function to create and format

time and date. Stamps the following sections discuss some

1) retrieving current date and time the easiest way to do this is with the get

date () function which returns an associative array containing current data

and time to try it out create and return the following script.

<?php

$current =get data [];

$current-time =$current [‗hours‗] ―:‖

$current [‗minutes‗] ―:‖ $current [‗seconds‗] ―:‖

$current-data =$current [‗day‗].‗.‗ $current [‗mon‗].‗.‗

$current [‗year‗];

echo ―it is now $current-time on $current-date‖;

Dr. M. Sivasankari – PLUNGE INTO PHP

35

?>

 EXECUTING EXTERNAL PROGRAMS

 To run an external program from your PHP script, place the

program commandline within backticks (``).

 The output of the command can also be assigned toa variable for

further use within the script.

 Try the following example, which runsthe UNIX du command (to

calculate disk usage) and places the resulting output ina PHP

variable:

Example

<?php

$output = `/bin/du -s /tmp/`;

echo $output;

?>

- - - - - -

Dr. M.Sivasankari – PLUNGE INTO PHP

36

fopen(filename, mode, includepath, context);

UNIT 03

FILE HANDLING FUNCTIONS

 PHP fopen() function Definition and Usage

If fopen() fails, it returns FALSE and an error on failure. You can

hide the error output by address ‗@‗ infront of the function name.

Syntax

Parameter Description

File name Required. specifies the file or URL to open

Mode

Required. Specifies the type of access you require to

the file/stream

Possible values:

 ―r‖ (read only. Starts at the beginningof

the file)

 ―r+‖ (read/write. Starts at thebeginning of

thefile)

 ―w‖ (write only. Opens and clears the

contents of file; or creates a new file ifit

doesn‗t exist)

 ―w+‖ (read/write. Opens and clears the

contents of file; or creates a new file ifit

doesn‗t exist)

 ―a‖ (write only. Opens and writes tothe

end of the file; or creates a new file if it

doesn‗t exist)

 ―a+‖ (read/write. Preserve file contentby

writing to the end of the file)

 ―x‖ (write only. Creates a new file. Returns

FALSE and an error if filealready exists)

 ―x+‖ (read/write. Creates a new file.

Returns FALSE and an error if filealready

exists)

Include _ path
Optional. Set this parameter to ‗1‗ if you want
tosearch for the file in the include _ path (in php.ini)

Context

Optional. Specifies the context of the file handle.

Context is a set of options that can modify the

behavior of a stream

Dr. M. Sivasankari – PLUNGE INTO PHP

37

feof(file);

Tips and Notes

NOTE: when writing to a text file, be sure to use the correct line-ending

character! Unix systems use\n, windows systems use \r\n, and Macintosh

systems use \r as the line ending character. Windows offers a translation

flag (‗t‗) which will translate \n to \r\n when working with the file. You

can also use ‗b‗ to force binary mode. To use these flags, specify either

‗b‗ or ‗t‗ as the last character of the mode.

Example

<?php

$file=fopen(―test.txt‖, ―r‖);

$file=fopen(―/home/test/test.t‖,

‖r‖);

$file=fopen(―/home/test/test.tx

t‖, ―w+‖);

$file=fopen(http://www.example.com/, ―r‖);

$file=fopen(ftp://user:password@example.com/test.txt,

―w‖);

?>

 PHP feof() function Definition and Usage

The feof() function checks if the ―end-of-file‖ (EOF) has been

reached.

This function returns TRUE if an error occurs, or if EOF has been

reached. Otherwise it returns FALSE.

Syntax

Parameter Description

File Required. Specifies the open file to check

http://www.example.com/

Dr. M.Sivasankari – PLUNGE INTO PHP

38

fgets(file, length);

Example

<?php

?>

$file = fopen(―test.txt‖, ―r‖);

//output a line of the file until the end is reached

$line = fgets($file);

while (!feof($file))

{

echo $line. ‖
‖;

$line = fgets($file);

}

fclose($file);

The output of the code above will be

Hello, this is a test file.

There are three lines here.

This is the last line.

 PHP fgets() function Definition

and Usage

 The fgets() function returns a line from an open file.

 The fgets() function stops returning on a new line, at the

specified length, or at EOF, whichever comes first.

 This function returns FALSE on failure.

Syntax

Parameter Description

File Required. Specifies the file to read from

Length
Optional. Specifies the number of bytes to read.

Default is 1024 bytes.

39

Dr. M. Sivasankari – PLUNGE INTO PHP

Example 1

<?php

$file = fopen(―test.txt‖, ―r‖);

echo fgets($file);

fclose($file);

?>

The output of the code above will be

Hello, this is a test file.

Example 2

Read a file line by line:

<?php

$file = fopen(―test.txt‖, ―r‖);

while (! feof($file))

{

echo fgets($file). ―
‖;

}

fclose($file);

?>

The output of the code above will be

Hello, this is a test file.

There are three lines here.

This is the last line.

 PHP fclose() function Definition

and Usage

 The fclose() function closes an open file

 This function returns TRUE on success or FALSE on failure.

Dr. M. Sivasankari – PLUNGE INTO PHP

40

fclose(file);

fgetc(file);

Syntax

Parameter Description

File Required. Specifies the file to close

Example

<? php

$file = fopen (―test.txt‖, ―r‖);

//some

code to

be

executed

fclose($fi

le);

?>

 PHP fgetc() function Definition and

Usage

The fgetc() function returns a single character from an open file.

Syntax

Parameter Description

file Required. Specifies the file to check

Tips and Notes

Note: This function is slow and should not be used on large files. If you

need to read one character at a time from a large file, use fgets() to read

data one line at a time and then process the line one character at a time

with fgetc().

41

Dr. M. Sivasankari – PLUNGE INTO PHP

Example 1

<?php

$file = fopen(―test.txt‖, ―r‖);

file_get_contents (path, include_path, context, start, max length);

echo fgetc($file);

fclose($file);

?>

The output of the code above will be:

H

Example2

Read file character by character

<?php

$file = fopen(―test.txt‖, ―r‖);

while(! feof($file))

{

echo fgetc($file);

}

fclose($file);

?>

The output of the code above will be

Hello, this is a test file.

 PHP file_get_contents() function

This function is the preferred way to read the contents of a file

into a string. Because it will use memory mapping techniques, if this is

supported by the server, to enhance (improve) performance.

Syntax

Dr. M. Sivasankari – PLUNGE INTO PHP

42

fscanf(file, format, mixed);

Parameter Description

Path Required. Specifies the file to read

Include-path

Optional. Set this parameter to ‗1‗ if you want

to search for the file in the include-path (in

php.ini) as well

Context

Optional. Specifies the context of the file

handle. Context is a set of options that can

modify the behaviour of a stream. Can be

skipped by using NULL.

Start
Optional. Specifies where in the file to start

reading. This parameter was added in PHP 5.1

Max-length
Optional. Specifies how many bytes to read.

Thisparameter was added in PHP 5.1

Tips and Notes

Tip: this function is binary-safe (meaning that both binary data, like

images, and character data can be written with this function).

Example

<?php

echo file-get-contents(―test.txt‖);

?>

The output of the code above will be

This is a test file with test

text.

 PHP fscanf() function

Definition and Usage

 The fscanf() function parses the input from an open file

according to the specified format.

Syntax

43

Dr. M. Sivasankari – PLUNGE INTO PHP

Parameter Description

File Required. Specifies the file to check

Format

Required. Specifies the format.

Possible format values:

 %%-returns a percentsign

 %b-binarynumber

 %c-the character according to the ASCII

value

 %d- signed decimalnumber

 %e-unsigned decimalnumber

 %f-floating-point number (localsettings

aware)

 %F- floating-point number (notlocal

settingsaware)

 %o-octalnumber

 %s-string

 %x-hexadecimalnumber(lowercase

letters)

 %X- hexadecimalnumber(uppercase

letters)

Additional format values.

These are placed between the

% and the letter (example

%.2f):

 +(force both + and - in front of

numbers. By default, only negative

numbers are marked)

 ‗ (specifies what to use as padding. Default

is space. Must be used together with the

width specifies. Example:%‗x20s (this

uses ―x‖ aspadding)

 - (left-justifies the variablevalue)

 [0-9] (specifies the minimum widthheld

to the variablevalue)

 [0-9] (specifies the number ofdecimal

digits maximum stringlength)

 Note: if multiple additional format values

are used, they must be in the same order as

above.

Tips and Notes

Note: any whitespace in the format string matches any whitespace in the

input stream. This means that a tab (\t) in the format string can match a

single space character in the input stream.

Dr. M. Sivasankari – PLUNGE INTO PHP

44

fseek(file, offset, whence);

 PHP fseek() function Definition

and Usage

 The fseeek() function seeks in an open file.

 This function moves the file pointer from its current position to a

new position, forward or backward, specified by the number of

bytes.

 This function returns 0 on success, or -1 on failure. Seeking past

EOF will not generate an error.

Syntax

Parameter Description

File Required. Specifies the open file to seek

in

Offset Required. Specifies the new position

(measured

 in bytes from the beginning of the file)

Whence Optional. (added PHP 4). Possible

values:

 SEEK_SET-set position equal tooffset.

Default

 SEEK_CUR-set position to current

location plusoffset

 SEEEK_END-set position to EOF plus

offset (to move to a position beforeEOF,

 the offers must be a negative value)

Tips and Notes

Tip: find the current position by using ftell()!

Example

<?php

$file = fopen(―test.txt‖, ―r‖);

//read first line fgets($file)

45

Dr. M. Sivasankari – PLUNGE INTO PHP

copy(file, to-file);

//move back to beginning of file fseek($file,

0);

?>

 PHP copy() function Definition and Usage

 The copy()function copies a file

 This function returns TRUE on success FALSE on failure.

Syntax

Parameter Description

File Required. Specifies the file to copy

To-file Required. Specifies the file to copy to

Tips and Notes

Note: if the destination file already exists, it will be overwritten.

Example

<?php

?>

echo copy(―source.txt‖, ―target.txt‖);

The output of the code above will be

1

 PHP unlink() function (or) delete()

Definition and Usage

 The unlink() function deletes a file.

 This function returns TRUE on success, or FALSE on failure.

Dr. M. Sivasankari – PLUNGE INTO PHP

46

unlink(filename, context)

fread(file, length);

Syntax

Parameter Description

Filename Required. Specifies the file to delete.

Context
Optional. Specifies the context of the file handle.

Context is a set of options that can modify the

behaviour of a stream

Example

<?php

$file =―test.txt‖;

if (!unlink($file))

{

}else {

}

?>

echo (―Error deleting $file‖);

echo (―deleted $file‖);

 PHP fread() function Definition and

Usage

 The fread() reads from an open file.

 The function will stops at the end of the file or when it reaches

the specified length, whichever comes first.

 This function returns the read string, or FALSE on failure.

Syntax

47

Dr. M. Sivasankari – PLUNGE INTO PHP

fwrite(file, string, length);

Parameter Description

File Required. Specifies the open file to read from

Length
Required. Specifies the maximum number of bytes to

read

Tips and Notes

Tip: this function is binary-safe (meaning that both binary data, like

images, and character data can be written with this function)

Example 1

Read 10 bytes from file:

<?php

$file = fopen(―test.txt‖, ‖r‖);

fread($file, ―10‖);

fclose ($file);

?>

Example 2

<?php

$file=fopen(―test.txt‖, ―r‖);

fread($file, filesize (―test.txt‖));

fclose($file);

?>

 PHP fwrite() writes to an open file

 The function will stop at the end of the file or when it reaches

the specified length, whichever comes first.

 This function returns the number of bytes written or FALSE on

failure.

Syntax

Dr. M. Sivasankari – PLUNGE INTO PHP

48

flock(file, lock, block);

Parameter Description

File Required. Specifies the open file to write to

String Required. Specifies the string to write to the open

File

Length Optional. Specifies the maximum number of

bytes to write.

Tips and Notes

Tip: This function is binary-safe (meaning that both binary data, like

images, and character data can be written with this function).

Example

<?php

$file = fopen(―test.txt‖, ―w‖);

echo fwrite ($file, ―Hello World. Testing!‖);

fclose($file);

?>

The output of the code above will be

Hello World. Testing!

 PHP flock() function Definition and

Usage

 The flock() function locks or releases a file.

 This function returns TRUE on success or FALSE on failure.

Syntax

Parameter Description

File Required. Specifies an open file to lock or release

49

Dr. M. Sivasankari – PLUNGE INTO PHP

Lock Required. Specifies what kind of lock to use.

Possible values

 LOCK_SH-shared lock (reader).Allow other

processer to access thefile.

 LOCK_EX- exclusive lock (writer).Prevent

other processes from accessing thefile

 LOCK_UN-release a shared or exclusive lock

 LOCK_NB-avoids blocking other processes

whilelocking

Block Optional. Set to 1 to block other processes while

Locking

Tips and Notes

Note: these locks only apply to the current PHP process. Other

processes can modify or delete a PHP- locked file if permissions allow.

Note: flock() is mandatory under windows.

Tip: the lock is released also by fclose(), which is called automatically

when script is finished.

Example

<?php

$file = fopen(―test.txt‖, ―w+‖);

//exclusive lock

if(flock ($file, LOCK_EX))

{

}else {

}

fwrite($file, ―write something‖);

//release lock

flock($file, LOCK_UN);

echo ―error locking file!‖;

fclose($file);

?>

- - - - - -

Dr. M. Sivasankari – PLUNGE INTO PHP

50

UNIT 04

MY SQL

 INTRODUCTION

MySQL is the most popular Open Source Relational SQL Database

Management System. MySQL is one of the best RDBMS being used for

developing various web-based software applications. MySQL is

developed, marketed and supported by MySQL AB, which is a Swedish

company. This tutorial will give you a quick start to MySQL and make you

comfortable with MySQL programming.

 DATA TYPES

Properly defining the fields in a table is important to the overall

optimization of your database. You should use only the type and size of

field you really need to use.

For example, do not define a field 10 character wide, if you know you are

only going to use 2 characters. These type of fields (or columns) are also

referred to as data types, after the type of data you will be storing in those

fields.

MySQL uses many different data types broken into three categories −

 Numeric

 Date and Time

 String Types.

Let us now discuss them in detail.

 Numeric Data Types

MySQL uses all the standard ANSI SQL numeric data types, so if

you're coming to MySQL from a different database system, these

definitions will look familiar to you.

51

Dr. M. Sivasankari – PLUNGE INTO PHP

The following list shows the common numeric data types and their

descriptions −

 INT − A normal-sized integer that can be signed or unsigned. If

signed, the allowable range is from -2147483648 to 2147483647. If

unsigned, the allowable range is from 0 to 4294967295. You can

specify a width of up to 11 digits.

 TINYINT − A very small integer that can be signed or unsigned. If

signed, the allowable range is from -128 to 127. If unsigned, the

allowable range is from 0 to 255. You can specify a width of up to

4 digits.

 SMALLINT − A small integer that can be signed or unsigned. If

signed, the allowable range is from -32768 to 32767. If unsigned,

the allowable range is from 0 to 65535. You can specify a width of

up to 5 digits.

 MEDIUMINT − A medium-sized integer that can be signed or

unsigned. If signed, the allowable range is from -8388608 to

8388607. If unsigned, the allowable range is from 0 to 16777215.

You can specify a width of up to 9 digits.

 BIGINT − A large integer that can be signed or unsigned. If signed,

the allowable range is from -9223372036854775808 to

9223372036854775807. If unsigned, the allowable range is from 0

to 18446744073709551615. You can specify a width of up to 20

digits.

 FLOAT(M,D) − A floating-point number that cannot be unsigned.

You can define the display length (M) and the number of decimals

(D). This is not required and will default to 10,2, where 2 is the

number of decimals and 10 is the total number of digits (including

decimals). Decimal precision can go to 24 places for a FLOAT.

Dr. M. Sivasankari – PLUNGE INTO PHP

52

 DOUBLE(M,D) − A double precision floating-point number that

cannot be unsigned. You can define the display length (M) and the

number of decimals (D). This is not required and will default to

16,4, where 4 is the number of decimals. Decimal precision can go

to 53 places for a DOUBLE. REAL is a synonym for DOUBLE.

 DECIMAL(M,D) − An unpacked floating-point number that

cannot be unsigned. In the unpacked decimals, each decimal

corresponds to one byte. Defining the display length (M) and the

number of decimals (D) is required. NUMERIC is a synonym for

DECIMAL.

 DATE AND TIME TYPES

The MySQL date and time datatypes are as follows −

 DATE − A date in YYYY-MM-DD format, between 1000-01-01

and 9999-12-31. For example, December 30
th

, 1973 would be

stored as 1973-12-30.

 DATETIME − A date and time combination in YYYY-MM-DD

HH:MM:SS format, between 1000-01-01 00:00:00 and 9999-12-31

23:59:59. For example, 3:30 in the afternoon on December 30
th

,

1973 would be stored as 1973-12-30 15:30:00.

 TIMESTAMP − A timestamp between midnight, January 1
st
, 1970

and sometime in 2037. This looks like the previous DATETIME

format, only without the hyphens between numbers; 3:30 in the

afternoon on December 30
th

, 1973 would be stored as

19731230153000 (YYYYMMDDHHMMSS).

 TIME − Stores the time in a HH:MM:SS format.

 YEAR(M) − Stores a year in a 2-digit or a 4-digit format. If the

length is specified as 2 (for example YEAR(2)), YEAR can be

53

Dr. M. Sivasankari – PLUNGE INTO PHP

between 1970 to 2069 (70 to 69). If the length is specified as 4,

then YEAR can be 1901 to 2155. The default length is 4.

 String Types

Although the numeric and date types are fun, most data you'll store will

be in a string format. This list describes the common string datatypes in

MySQL.

 CHAR(M) − A fixed-length string between 1 and 255 characters in

length (for example CHAR(5)), right-padded with spaces to the

specified length when stored. Defining a length is not required, but

the default is 1.

 VARCHAR(M) − A variable-length string between 1 and 255

characters in length. For example, VARCHAR(25). You must

define a length when creating a VARCHAR field.

 BLOB or TEXT − A field with a maximum length of 65535

characters. BLOBs are "Binary Large Objects" and are used to

store large amounts of binary data, such as images or other types of

files. Fields defined as TEXT also hold large amounts of data. The

difference between the two is that the sorts and comparisons on the

stored data are case sensitive on BLOBs and are not case

sensitive in TEXT fields. You do not specify a length with BLOB

or TEXT.

 TINYBLOB or TINYTEXT − A BLOB or TEXT column with a

maximum length of 255 characters. You do not specify a length

with TINYBLOB or TINYTEXT.

 MEDIUMBLOB or MEDIUMTEXT − A BLOB or TEXT

column with a maximum length of 16777215 characters. You do

not specify a length with MEDIUMBLOB or MEDIUMTEXT.

Dr. M. Sivasankari – PLUNGE INTO PHP

54

 LONGBLOB or LONGTEXT − A BLOB or TEXT column with

a maximum length of 4294967295 characters. You do not specify a

length with LONGBLOB or LONGTEXT.

 ENUM − An enumeration, which is a fancy term for list. When

defining an ENUM, you are creating a list of items from which the

value must be selected (or it can be NULL). For example, if you

wanted your field to contain "A" or "B" or "C", you would define

your ENUM as ENUM ('A', 'B', 'C') and only those values (or

NULL) could ever populate that field.

 AGGREGATE FUNCTIONS

Aggregate functions retrieve a single value after performing a

calculation on a set of values.

Functions are COUNT(), AVG(), SUM(), MIN(), MAX()

COUNT()

The COUNT() function returns the number of rows that matches a

specified criteria.

Syntax

SELECT COUNT(column_name)FROM table_name

WHERE condition;

Example

SELECT COUNT(ProductID)

FROM Products;

Note: NULL values are not counted.

AVG()

The AVG() function returns the average value of a numeric

column.

55

Dr. M. Sivasankari – PLUNGE INTO PHP

Syntax

SELECT AVG(column_name)FROM table_name

WHERE condition;

Example

SELECT AVG(Price)FROM Products;

Note: NULL values are ignored.

SUM()

The SUM() function returns the total sum of a numeric column.

Syntax

SELECT SUM(column_name)FROM table_name

WHERE condition;

Example

SELECT SUM(Quantity)FROM OrderDetails;

Note: NULL values are ignored.

MIN()

The MIN() function returns the smallest value of the selected

column.

Syntax

SELECT MIN(column_name)FROM table_nameWHERE condi

tion;

Example

SELECT MIN(Price) AS SmallestPriceFROM Products;

Dr. M. Sivasankari – PLUNGE INTO PHP

56

SELECT * from products WHERE prod_price< 100 OR prod_price> 200;

MAX()

The MAX() function returns the largest value of the selected

column.

Syntax

SELECT MAX(column_name)FROM table_name

WHERE condition;

Example

SELECT MAX(Price) AS LargestPrice FROM Products;

 ADVANCED DATA FILTERING DATA MANIPULATION

FUNCTION

4.4.1. Filtering Data Using the OR Operator

This can be achieved using the WHERE clause in combination with

the OR operator.

For example, that we need to list all products in our sample database that

cost less than $100 or greater than $200. The SQL statement to achieve this

would read as follows:

The resulting output from executing the above SQL statement would

contain all products except those priced between $100 and $200:

| 49 |

| 49 | | Cordless Mouse 4 | EasyTech Mouse 7632

3 | Microsoft 10-20 Keyboard | Ergonomic Keyboard |

|

+-----------+----------------------------+--------------------------+------------+

| prod_code | prod_name | prod_desc |prod_price |

+-----------+----------------------------+--------------------------+------------+

Dr. M. Sivasankari – PLUNGE INTO PHP

+-----------+--------------------------+-------------------+------------+

| prod_code | prod_name | prod_desc | prod_price |

+-----------+--------------------------+-------------------+------------+

SELECT * from products WHERE prod_name = 'Microsoft 10-20

Keyboard' AND prod_price< 30;

 Filtering Data Using the AND Operator

The AND operator selects rows based on the requirement that meet

multiple requirements (as opposed to the "either or" approach of

the OR operator).

For example, that we need to find a "Microsoft 10-20 Keyboard" that costs

less than $30. To do so we would construct a SELECT statement as

follows:

Since we have no such keyboards in our table that meet the price criteria

we get no results. If the customer decides to pay more we can change our

search to find a suitable item:

This time we find what the customer needs and the price she is willing to

pay:

57

SELECT * from products WHERE prod_name = 'Microsoft 10-20

Keyboard' AND prod_price< 50;

+-----------+----------------------------+--------------------------+------------+

5 rows in set (0.00 sec)

| 999 |

| 60 |

| 399 | | Smart Phone 8 | Apple iPhone 8Gb

6 | Buffalo AirStation Turbo G | Wireless Ethernet Bridge

| Desktop PC 5 | Dell XPS 400 |

|

|

Dr. M. Sivasankari – PLUNGE INTO PHP

58

+-----------+--------------------------+-------------------+------------+

2 rows in set (0.00 sec)

49 | | Cordless Mouse | 4 | EasyTech Mouse 7632

49 | 3 | Microsoft 10-20 Keyboard | Ergonomic Keyboard| |

|

SELECT * from products WHERE prod_name = 'Microsoft 10-20

Keyboard' OR prod_name = 'EasyTech Mouse 7632' AND prod_price =

49;

+-----------+--------------------------+-------------------+------------+

| prod_code | prod_name | prod_desc | prod_price |

+-----------+--------------------------+-------------------+------------+

 Combining AND and OR Operators

A SELECT statement with a WHERE clause can combine any

number of AND and OR operators to create complex filtering requirements.

For example, we can combine operators to find either a mouse or a

keyboard that costs $49:

 Understanding Operator Precedence

When combining operators, it is important to understand something

called operator precedence, which refers to the order in which operators in

the same statement are evaluated.

+-----------+--------------------------+-------------------+------------+

1 row in set (0.00 sec)

49 | 3 | Microsoft 10-20 Keyboard | Ergonomic Keyboard| |

Dr. M. Sivasankari – PLUNGE INTO PHP

SELECT * from products WHERE prod_price IN (49, 100, 999);

+-----------+--------------------------+-------------------+------------+

| prod_code | prod_name | prod_desc | prod_price |

+-----------+--------------------------+-------------------+------------+

SELECT prod_desc FROM products WHERE prod_name = 'WildTech

250Gb 1700' OR prod_name = 'Moto Razr' AND prod_price< 100;

By default, MySQL evaluates AND expressions before OR expressions

regardless of whether the OR appears before the AND when reading the

statement from left to right.

This means, for example, that the following SQL statement will evaluate

the AND expression before it evaluates the OR:

To change the operator precedence (in this case to cause the OR expression

to be evaluated first), simply surround the OR expression with parentheses

as follows:

The OR expression contained in the parentheses will now be executed

before the AND expression.

 Specifying a Range of Conditions using the IN Clause

The IN operator allows a range of filter criteria to be specified in a

WHERE clause, all contained in parentheses and comma separated.

For example, imagine we need to list all products in our database that have

a price of either $49, $100 or $999. Obviously, we could write a statement

that uses a series of OR expressions. Whilst this would ultimately work a

much quicker way is to provide a list of desired prices using the IN clause:

59

SELECT prod_desc FROM products WHERE (prod_name = 'WildTech

250Gb 1700' OR prod_name = 'Moto Razr') AND prod_price< 100;

Dr. M. Sivasankari – PLUNGE INTO PHP

60

+-----------+----------------------------+-----------------------------+------------+

5 rows in set (0.00 sec)

| 199 |

| 399 |

| Portable Music/

Movie Player

| Smart Phone 8 | Apple iPhone 8Gb |

7 | Apple iPod Touch

60 | 6 | Buffalo AirStation Turbo G | Wireless Ethernet Bridge|

200 | | Mobile Phone| 2 | Moto Razr

120 | | SATA Disk Drive | 1 | WildTech 250Gb 1700 |

|

|

|

mysql> SELECT * from products WHERE prod_price NOT IN (49, 100,

999);

+-----------+----------------------------+-----------------------------+------------+

| prod_code | prod_name | prod_desc | prod_price |

+-----------+----------------------------+-----------------------------+------------+

 Using the NOT Operator

The final operator to look at in this chapter is the NOT operator.

The NOT operator is used to negate the result of an expression and is of

particular use when using the IN operator.

For example, we could very easily change our previous IN example so that

it lists all the products in our table that do NOT cost $49, $100 or $999

simply by used a NOT IN operator combination:

+-----------+--------------------------+-------------------+------------+

3 rows in set (0.00 sec)

999 | | | Desktop PC 5 | Dell XPS 400

49 |

49 | | Cordless Mouse | 4 | EasyTech Mouse 7632

3 | Microsoft 10-20 Keyboard | Ergonmoc Keyboard | |

|

|

Dr. M. Sivasankari – PLUNGE INTO PHP

61

 GROUPING DATA

The GROUP BY statement groups rows that have the same values

into summary rows, like "find the number of customers in each country".

The GROUP BY statement is often used with aggregate functions

(COUNT, MAX, MIN, SUM, AVG) to group the result-set by one or more

columns.

GROUP BY Syntax

SELECT column_name(s)FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

SQL GROUP BY Examples

The following SQL statement lists the number of customers in each

country:

Example

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

 SUB QUERIES

A subquery is a SQL query nested inside a larger query.

A subquery may occur in:

o - A SELECT clause

o - A FROM clause

o - A WHERE clause

Dr. M. Sivasankari – PLUNGE INTO PHP

62

 In MySQL subquery can be nested inside a SELECT, INSERT,

UPDATE, DELETE, SET, or DO statement or inside another

subquery.

 A subquery is usually added within the WHERE Clause of another

SQL SELECT statement.

 We can use the comparison operators, such as >, <, or =. The

comparison operator can also be a multiple-row operator, such as

IN, ANY, SOME, or ALL.

 A subquery can be treated as an inner query, which a SQL query

placed as a part of another query is called as outer query.

 The inner query executes first before its parent query so that the

results of the inner query can be passed to the outer query.

Subquery Syntax

 The subquery (inner query) executes once before the main query

(outer query) executes.

 The main query (outer query) use the subquery result.

Subquery syntax as specified by the SQL standard and supported in

MySQL

DELETE FROM t1

WHERE s11 > ANY

(SELECT COUNT(*) /* no hint */ FROM t2

Dr. M. Sivasankari – PLUNGE INTO PHP

63

WHERE NOT EXISTS

(SELECT * FROM t3

WHERE ROW(5*t2.s1,77)=

(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM

(SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single

column, or a table (one or more rows of one or more columns). These are

called scalar, column, row, and table subqueries.

MySQL Subquery Example

Using a subquery, list the name of the employees, paid more than

'Alexander' from emp_details .

mysql> SELECT first_name,last_name, salary FROM emp_details

WHERE salary >(SELECT salary FROM emp_details

WHERE first_name='Alexander');

+------------+-----------+----------+

| first_name | last_name | salary |

+------------+-----------+----------+

| Steven | King | 24000.00 |

| Neena | Kochhar | 17000.00 |

| Lex | De Haan | 17000.00 |

| RABI | Chandra | 15000.00 |

| Ana | King | 17000.00 |

+------------+-----------+----------+

Dr. M. Sivasankari – PLUNGE INTO PHP

64

5 rows in set (0.00 sec)

Subqueries: Guidelines

There are some guidelines to consider when using subqueries:

- A subquery must be enclosed in parentheses.

- Use single-row operators with single-row subqueries, and use

multiple-rowoperators with multiple-row subqueries.

- If a subquery (inner query) returns a null value to the outer query,

the outer query will not return any rows when using certain comparison

operators in a WHERE clause.

 TYPES OF SUBQUERIES

 The Subquery as Scalar Operand

 Comparisons using Subqueries

 Subqueries with ALL, ANY, IN, or SOME

 Row Subqueries

 Subqueries with EXISTS or NOT EXISTS

 Correlated Subqueries

 Subqueries in the FROM Clause

 MySQL Subquery as Scalar Operand

A scalar subquery is a subquery that returns exactly one column

value from one row. A scalar subquery is a simple operand, and you can

use it almost anywhere a single column value or literal is legal. If the

subquery returns 0 rows then the value of scalar subquery expression in

NULL and if the subquery returns more than one row thenMySQL returns

an error.

Dr. M. Sivasankari – PLUNGE INTO PHP

65

There is some situation where a scalar subquery cannot be used. If a

statement permits only a literal value, you cannot use a subquery. For

example, LIMIT requires literal integer arguments, and LOAD DATA

INFILE requires a literal string file name. You cannot use subqueries to

supply these values.

Example: MySQL Subquery as Scalar Operand

mysql> SELECT employee_id, last_name,

(CASE WHEN department_id=(

SELECT department_id from departments WHERE

location_id=2500)

THEN 'Canada' ELSE 'USA' END)

location FROM employees;

+-------------+-------------+----------+

| employee_id | last_name | location |

+-------------+-------------+----------+

| 100 | King | USA |

| 101 | Kochhar | USA |

| 102 | De Haan | USA |

| 103 | Hunold | USA |

| 104 | Ernst | USA |

| 105 | Austin | USA |

| - - - - - - - - - - - - - - - - - - -|

| - - - - - - - - - - - - - - - - - - -|

107 rows in set (0.00 sec)

 MySQL Subqueries: Using Comparisons

A subquery can be used before or after any of the comparison

operators. The subquery can return at most one value. The value can be the

result of an arithmetic expression or a column function. SQL then

compares the value that results from the subquery with the value on the

Dr. M. Sivasankari – PLUNGE INTO PHP

66

other side of the comparison operator. You can use the following

comparison operators:

Operator Description

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

!= Not equal to

<> Not equal to

<=> NULL-safe equal to operator

For example, suppose you want to find the employee id, first_name,

last_name, and salaries for employees whose average salary is higher than

the average salary throughout the company.

mysql> SELECT employee_id,first_name,last_name,salary

FROM employees WHERE salary >

(SELECT AVG(SALARY) FROM employees);

+-------------+-------------+------------+----------+

| employee_id | first_name |last_name | salary |

+-------------+-------------+------------+----------+

| 100 | Steven | King | 24000.00 |

| 101 | Neena | Kochhar | 17000.00 |

| 102 | Lex | De Haan | 17000.00 |

| 103 | Alexander | Hunold| 9000.00 |

| 108 | Nancy | Greenberg | 12000.00 |

Dr. M. Sivasankari – PLUNGE INTO PHP

67

SELECT c1 FROM t1 WHERE c1 <>ALL(SELECT c1 FROM t2);

SELECT c1 FROM t1 WHERE c1 NOTIN(SELECT c1 FROM t2);

| 109 | Daniel | Faviet| 9000.00 |

| 120 | Matthew | Weiss | 8000.00 |

| 121 | Adam | Fripp| 8200.00 |

| 122 | Payam | Kaufling| 7900.00 |

|- -|

|- -|

+-------------+-------------+------------+----------+

51 rows in set (0.00 sec)

 MySQL Subqueries with ALL, ANY, IN, or SOME

We can use a subquery after a comparison operator, followed by the

keyword ALL, ANY, or SOME.

a. ALL Operator

The ALL operator compares value to every value returned by the

subquery. Therefore, ALL operator (which must follow a comparison

operator) returns TRUE if thecomparison is TRUE for ALL of the values in

the column that the subquery returns.

Syntax

operand comparison_operator ALL (subquery)

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

Code

Example: MySQL Subquery, ALL operator

The following query selects the department with the highest average

salary. The subquery finds the average salary for each department, and then

the main query selects the department with the highest average salary.

Dr. M. Sivasankari – PLUNGE INTO PHP

68

mysql> SELECT department_id, AVG(SALARY)

FROM EMPLOYEES GROUP BY department_id

HAVING AVG(SALARY)>=ALL

(SELECT AVG(SALARY) FROM EMPLOYEES GROUP BY

department_id);

+---------------+--------------+

| department_id | AVG(SALARY) |

+---------------+--------------+

| 90 | 19333.333333 |

+---------------+--------------+

1 row in set (0.00 sec)

Note: Here we have used ALL keyword for this subquery as the

department selected by the query must have an average salary greater than

or equal to all the average salaries of the other departments.

b. ANY Operator

The ANY operator compares the value to each value returned by the

subquery. Therefore, ANY keyword (which must follow a comparison

operator) returns TRUE if the comparison is TRUE for ANY of the values

in the column that the subquery returns.

Syntax

operand comparison_operator ANY (subquery)

Example

MySQL Subquery, ANY operator

The following query selects any employee who works in the location 1800.

The subquery finds the department id in the 1800 location, and then the

main query selects the employees who work in any of these departments.

Dr. M. Sivasankari – PLUNGE INTO PHP

69

SELECT c1 FROM t1 WHERE c1 =ANY(SELECT c1 FROM t2);

SELECT c1 FROM t1 WHERE c1 IN(SELECT c1 FROM t2);

Departments table

mysql> SELECT first_name, last_name,department_id

FROM employees WHERE department_id= ANY

(SELECT DEPARTMENT_ID FROM departments WHERE

location_id=1800);

+------------+-----------+---------------+

| first_name | last_name | department_id |

+------------+-----------+---------------+

| Michael | Hartstein | 20 |

| Pat | Fay | 20 |

+------------+-----------+---------------+

2 rows in set (0.00 sec)

Note: We have used ANY keyword in this query because it is likely that

the subquery will find more than one department in 1800 location. If you

use the ALL keyword instead of the ANY keyword, no data is selected

because no employee works in all departments‗s of 1800 location

c. IN Operator

When used with a subquery, the word IN (equal to any member of

the list) is an alias for = ANY. Thus, the following two statements are the

same:

Code

Copy

The word SOME is an alias for ANY. Thus, these two statements are the

same:

Dr. M. Sivasankari – PLUNGE INTO PHP

70

SELECT c1 FROM t1 WHERE c1 <>ANY(SELECT c1 FROM

t2);

SELECT c1 FROM t1 WHERE c1 <>SOME(SELECT c1 FROM

t2);

SELECT*FROM table1 WHERE(col1,col2)=(SELECT col3,

col4 FROM table2 WHERE id =10);

SELECT*FROM table1 WHEREROW(col1,col2)=(SELECT

col3, col4 FROM table2 WHERE id =10);

Code

MySQL Row Subqueries

A row subquery is a subquery that returns a single row and more than one

column value. You can use = , >, <, >=, <=, <>, !=, <=> comparison

operators. See the following examples:

Code

For both queries,

 if the table table2 contains a single row with id = 10, the subquery

returns a single row. If this row has col3 and col4 values equal to

the col1 and col2 values of any rows in table1, the WHERE

expression is TRUE and each query returns those table1 rows.

 If the table2 row col3 and col4 values are not equal the col1 and

col2 values of any table1 row, the expression is FALSE and the

query returns an empty result set. The expression is unknown (that

is, NULL) if the subquery produces no rows.

 An error occurs if the subquery produces multiple rows because a

row subquery can return at most one row.

https://www.w3resource.com/mysql/comparision-functions-and-operators/between-and-operator.php
https://www.w3resource.com/mysql/comparision-functions-and-operators/between-and-operator.php

Dr. M. Sivasankari – PLUNGE INTO PHP

71

ERROR 1242(21000): Subquery returns more than 1row

WHERE

manager_id ROW(department_id,manager_id)=(SELECTdepartment_id,

FROM departments WHERE location_id=1700);

mysql>SELECT first_name FROM employees

Example: MySQL Row Subqueries

In the following examples, queries showsdifferent result according to

above conditions:

employees table:

mysql> SELECT first_name

FROM employees

WHERE ROW(department_id, manager_id) = (SELECT

department_id, manager_id FROM departments WHERE

location_id = 1800);

+------------+

| first_name |

+------------+

| Pat |

+------------+

1 row in set (0.00 sec)

Code

Code

mysql>SELECT first_name FROM employees WHERE ROW

(department_id,manager_id)=(SELECTdepartment_id,manager_id FROM

departments WHERE location_id=2800);

Empty set(0.00 sec)

Dr. M. Sivasankari – PLUNGE INTO PHP

72

 MySQL Subqueries with EXISTS or NOT EXISTS

The EXISTS operator tests for the existence of rows in the

results set of the subquery. If a subquery row value is found, EXISTS

subquery is TRUE and in this case NOT EXISTS subquery is FALSE.

Syntax

SELECT column1 FROM table1 WHERE EXISTS (SELECT * FROM

table2);

In the above statement, if table2 contains any rows, even rows with

NULL values, the EXISTS condition is TRUE. Generally, an EXISTS

subquery starts with SELECT *, but it could begin with SELECT 'X',

SELECT 5, or SELECT column1 or anything at all. MySQL ignores the

SELECT list in such a subquery, so it makes no difference.

Example: MySQL Subqueries with EXISTS

From the following tables (employees) find employees (employee_id,

first_name, last_name, job_id, department_id) who have at least one person

reporting to them.

employees table:

SELECT employee_id, first_name, last_name, job_id, department_id

FROM employees E

WHERE EXISTS (SELECT * FROM employees WHERE manager_id =

E.employee_id);

+-------------+------------+-----------+---------+---------------+

| employee_id | first_name | last_name | job_id |department_id |

+-------------+------------+-----------+---------+---------------+

| 100 | Steven | King | AD_PRES | 90 |

| 101 | Neena | Kochhar | AD_VP | 90 |

| 102 | Lex | De Haan | AD_VP | 90 |

| 103 | Alexander |Hunold | IT_PROG | 60 |

Dr. M. Sivasankari – PLUNGE INTO PHP

73

| 108 | Nancy | Greenberg | FI_MGR | 100 |

| 114 | Den | Raphaely | PU_MAN | 30 |

| 120 | Matthew | Weiss | ST_MAN | 50 |

| 121 | Adam | Fripp | ST_MAN | 50 |

| ---------- | ---------- | --------- | ------- | ------------- |

+-------------+------------+-----------+---------+---------------+

18 rows in set (0.02 sec)

Example: MySQL Subqueries with NOT EXISTS

NOT EXISTS subquery almost always contains correlations. Here is an

example:From the following table (departments and employees) find all

departments (department_id, department_name) that do not have any

employees.

departments table:

mysql> SELECT department_id, department_name

FROM departments d

WHERE NOT EXISTS (SELECT * FROM employees WHERE

department_id = d.department_id);

+---------------+----------------------+

| department_id | department_name |

+---------------+----------------------+

| 120 | Treasury |

| 130 | Corporate Tax |

| 140 | Control And Credit |

| 150 | Shareholder Services |

| 160 | Benefits |

| 170 | Manufacturing |

| 180 | Construction |

| 190 | Contracting |

| 200 | Operations |

| ------------ | -------------------- |

Dr. M. Sivasankari – PLUNGE INTO PHP

74

+---------------+----------------------+

16 rows in set (0.00 sec)

 MySQL Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a

table (in the parent query) that also appears in the outer query. MySQL

evaluates from inside to outside.

Correlated subquery syntax:

SELECT column1, column2,…

FROM table2 outerr

WHERE column1 operator

FROM table2WHERE expr1 –Outer.expr2);

Example - 1: MySQL Correlated Subqueries

Following query find all employees who earn more than the average salary

in their department.

employees table:

mysql> SELECT last_name, salary, department_id FROM

employees outer

WHERE salary > (SELECT AVG(salary) FROM employees WHERE

department_id = outer.department_id);

+-----------+----------+---------------+

| last_name | salary | department_id |

+-----------+----------+---------------+

| King | 24000.00 | 90 |

| Hunold| 9000.00 | 60 |

| Ernst | 6000.00 | 60 |

| Greenberg | 12000.00 | 100 |

| Faviet| 9000.00 | 100 |

Dr. M. Sivasankari – PLUNGE INTO PHP

75

| Raphaely | 11000.00 | 30 |

| Weiss | 8000.00 | 50 |

| Fripp| 8200.00 | 50 |

| -------- | -------- | ------------ |

+-----------+----------+---------------+

38 rows in set (0.02 sec)

4.8.6 MySQL Subqueries in the FROM Clause

Subqueries work in a SELECT statement's FROM clause.

Syntax

SELECT ... FROM (subquery) [AS] name ...

Every table in a FROM clause must have a name, therefore the [AS]

name clause is mandatory. Any columns in the subquery select list must

have unique names.

Example

MySQL Subqueries in the FROM Clause

We have the following table tb1.

mysql> CREATE TABLE tb1 (c1 INT, c2 CHAR(5), c3

FLOAT); Query OK, 0 rows affected (0.73 sec)

Let insert some values into tb1.

mysql> INSERT INTO tb1 VALUES (1, '1', 1.0);

Query OK, 1 row affected (0.11 sec)

mysql> INSERT INTO tb1 VALUES (2, '2', 2.0);

Query OK, 1 row affected (0.07 sec)

mysql> INSERT INTO tb1 VALUES (3, '3', 3.0);

Query OK, 1 row affected (0.03 sec)

mysql> select * from tb1;

Dr. M. Sivasankari – PLUNGE INTO PHP

76

+------+------+------+

| c1 | c2 | c3 |

+------+------+------+

| 1 | 1 | 1 |

| 2 | 2 | 2 |

| 3 | 3 | 3 |

+------+------+------+

3 rows in set (0.00 sec)

Here is how to use a subquery in the FROM clause, using the example table

(tb1) :

mysql> SELECT sc1, sc2, sc3

FROM (SELECT c1 AS sc1, c2 AS sc2, c3*3 AS sc3 FROM tb1) AS sb

WHERE sc1 > 1;

+------+------+------+

| sc1 | sc2 | sc3 |

+------+------+------+

| 2 | 2 | 6 |

| 3 | 3 | 9 |

+------+------+------+

2 rows in set (0.02 sec)

 JOINING TABLES

A JOIN clause is used to combine rows from two or more tables, based on

a related column between them.

Let's look at a selection from the "Orders" table:

OrderID CustomerID OrderDate

10308 2 1996-09-18

10309 37 1996-09-19

10310 77 1996-09-20

Dr. M. Sivasankari – PLUNGE INTO PHP

77

Then, look at a selection from the "Customers" table:

CustomerID CustomerName ContactName Country

2 Raju Jothi Germany

37 Priya Muruga India

77 Mani Ponmalar India

Notice that the "CustomerID" column in the "Orders" table refers to the

"CustomerID" in the "Customers" table. The relationship between the two

tables above is the "CustomerID" column.

Then, we can create the following SQL statement (that contains an INNER

JOIN), that selects records that have matching values in both tables:

EXAMPLE

SELECT Orders.OrderID, Customers.CustomerName,

Orders.OrderDate

FROM Orders

INNER JOIN Customers ON Orders.CustomerID=Customers.Custo

merID;

and it will produce something like this:

OrderID CustomerName OrderDate

10308 Raju 9/18/1996

10365 Priya 11/27/1996

10383 Mani 12/16/1996

Dr. M. Sivasankari – PLUNGE INTO PHP

78

 Different Types of SQL JOINs

Here are the different types of the JOINs in SQL

 (INNER) JOIN: Returns records that have matching values in both

tables

 LEFT (OUTER) JOIN: Returns all records from the left table, and

the matched records from the right table

 RIGHT (OUTER) JOIN: Returns all records from the right table,

and the matched records from the left table

 FULL (OUTER) JOIN: Returns all records when there is a match

in either left or right table

 SQL INNER JOIN Keyword

The INNER JOIN keyword selects records that have matching

values in both tables.

Dr. M. Sivasankari – PLUNGE INTO PHP

79

INNER JOIN Syntax

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

The following SQL statement selects all orders with customer information:

Example

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID =

Customers.CustomerID;

Note: The INNER JOIN keyword selects all rows from both tables as long

as there is a match between the columns. If there are records in the

"Orders" table that do not have matches in "Customers", these orders will

not be shown!

 JOIN Three Tables

The following SQL statement selects all orders with customer and shipper

information:

Example

SELECT Orders.OrderID, Customers.CustomerName,

Shippers.ShipperName

Dr. M. Sivasankari – PLUNGE INTO PHP

80

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID =

Customers.CustomerID)

INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

 SQL LEFT JOIN

The LEFT JOIN keyword returns all records from the left table

(table1), and the matched records from the right table (table2). The result is

NULL from the right side, if there is no match.

LEFT JOIN Syntax

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

SQL LEFT JOIN Example

The following SQL statement will select all customers, and any

orders they might have:

Example

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID =

Dr. M. Sivasankari – PLUNGE INTO PHP

81

Orders.CustomerID

ORDER BY Customers.CustomerName;

Note: The LEFT JOIN keyword returns all records from the left table

(Customers), even if there are no matches in the right table (Orders).

 SQL RIGHT JOIN

The RIGHT JOIN keyword returns all records from the right

table (table2), and the matched records from the left table (table1). The

result is NULL from the left side, when there is no match.

RIGHT JOIN Syntax

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

SQL RIGHT JOIN Example

The following SQL statement will return all employees, and any orders

they might have placed:

SELECT Orders.OrderID, Employees.LastName,

Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID =

Dr. M. Sivasankari – PLUNGE INTO PHP

82

Employees.EmployeeID

ORDER BY Orders.OrderID;

Note: The RIGHT JOIN keyword returns all records from the right table

(Employees), even if there are no matches in the left table (Orders).

 SQL FULL OUTER JOIN

The FULL OUTER JOIN keyword returns all records when there is a

match in left (table1) or right (table2) table records.

Note: FULL OUTER JOIN can potentially return very large result-sets!

Tip: FULL OUTER JOIN and FULL JOIN are the same.

FULL OUTER JOIN Syntax

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

SQL FULL OUTER JOIN Example

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.C

Dr. M. Sivasankari – PLUNGE INTO PHP

83

ustomerID

ORDER BY Customers.CustomerName;

Note: The FULL OUTER JOIN keyword returns all matching records from

both tables whether the other table matches or not. So, if there are rows in

"Customers" that do not have matches in "Orders", or if there are rows in

"Orders" that do not have matches in "Customers", those rows will be listed

as well.

4.10.5. SQL Self JOIN

A self JOIN is a regular join, but the table is joined with itself.

Self JOIN Syntax

SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

T1 and T2 are different table aliases for the same table.

SQL Self JOIN Example

The following SQL statement matches customers that are from the same

city:

SELECT A.CustomerName AS CustomerName1,

B.CustomerName AS CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerID<>B.CustomerID

AND A.City = B.City

ORDER BY A.City;

Dr. M. Sivasankari – PLUNGE INTO PHP

84

 SET OPERATORS

SQL supports few Set operations which can be performed on the

table data. These are used to get meaningful results from data stored in the

table, under different special conditions.

In this tutorial, we will cover 4 different types of SET operations,

along with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

 UNION Operation

UNION is used to combine the results of two or

more SELECT statements. However it will eliminate duplicate rows from its

result set. In case of union, number of columns and datatype must be same

in both the tables, on which UNION operation is being applied.

Example of UNION

The First table,

ID Name

1 abhi

2 adam

Dr. M. Sivasankari – PLUNGE INTO PHP

85

The Second table,

ID Name

2 adam

3 Chester

Union SQL query will be,

SELECT * FROM First

UNION

SELECT *FROM Second;

The resultset table will look like,

ID NAME

1 abhi

2 adam

3 Chester

 UNION ALL

This operation is similar to Union. But it also shows the duplicate

rows.

Example of Union All

The First table,

ID NAME

1 abhi

2 adam

Dr. M. Sivasankari – PLUNGE INTO PHP

86

The Second table,

ID NAME

2 Adam

3 Chester

Union All query will be like,

SELECT *FROM First

UNION ALL

SELECT *FROM Second;

The result set table will look like,

ID NAME

1 Abhi

2 Adam

2 Adam

3 Chester

 INTERSECT

Intersect operation is used to combine two SELECT statements, but

it only returns the records which are common from both SELECT

statements.

In case of INTERSECT the number of columns and data type must

be same.

NOTE: MySQL does not support INTERSECT operator.

Dr. M. Sivasankari – PLUNGE INTO PHP

87

EXAMPLE OF INTERSECT

The First table

ID NAME

1 abhi

2 adam

The Second table

ID NAME

2 adam

3 Chester

Intersect query will be

SELECT *FROM First

INTERSECT

SELECT *FROM Second;

The result set table will look like

ID NAME

2 adam

 MINUS

The Minus operation combines results of two SELECT statements and

return only those in the final result, which belongs to the first set of the

result.

Dr. M. Sivasankari – PLUNGE INTO PHP

88

Example

The First table

ID NAME

1 Abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Minus query will be

SELECT * FROM First

MINUS

SELECT * FROM Second;

The result set table will look like

ID NAME

1 abhi

Dr. M. Sivasankari – PLUNGE INTO PHP

89

 Data Manipulation Language (DML)

Data Manipulation Language (DML) statements or commands are

used for managing data within tables. Some commands of DML

are:

Some commands of DML are:

 SELECT – retrieve data from the a database

 INSERT – insert data into a table

 UPDATE – updates existing data within a table

 DELETE – deletes all records from a table, the space for the records

remain

 MERGE – UPSERT operation (insert or update)

 CALL – call a PL/SQL or Java subprogram

 LOCK TABLE – control concurrency

INSERT

The insert statement is used to add new row to a table.

Syntax

INSERT INTO <table name> VALUES (<value 1>…..< value n>);

Example

INSERT INTO STUDENT VALUES(1001,‗Ram‗);

The inserted values must match the table structure exactly in the number of

attributes and the data type of each attribute. Character type values are

always enclosed in single quotes; number values are never in quotes;data

values are often (but not always) in the format ‗yyyy-mm-dd‗

(for example. ‗2006-11-30‗);

UPDATE

The update statement is used to change values that are already in a table.

UPDATE <table name> SET <attribute>=<expression>WHERE

<condition>;

Example

UPDATE STUDENT SET Name=‗Amar‗ WHERE StudID=1001;

Dr. M. Sivasankari – PLUNGE INTO PHP

90

Theupdate expression can be a constant, any computed value, or even the

result of a SELECT statement that returns a single row and a single

column.

DELETE STATEMENT

The delete statement deletes row(s) from a table.

Syntax

DELETE FROM <table name> WHERE <condition>;

EXAMPLE

DELETE FROM STUDENT WHERE Studid=1001;

If the WHERE clause is omitted, then every row of the table is deleted that

matches with thespecified condition.

SELECT STATEMENT

The SELECT statement is used to form queries for w=extracting

information out of the database.

Syntax

SELECT <attribute>…..<attribute n> FROM <table name>;

Example

SELECT StudID, Name FROM STUDENT;

The SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in a

database.

SYNTAX

CREATE TABLE table_name (

column1 datatype,

column2 datatype,

column3 datatype,

....

);

Dr. M. Sivasankari – PLUNGE INTO PHP

91

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g.

varchar, integer, date, etc.).

SQL CREATE TABLE EXAMPLE

The following example creates a table called "Persons" that contains five

columns: PersonID, LastName, FirstName, Address, and City:

CREATE TABLE Persons (

PersonID int,

LastNamevarchar(255),

FirstName varchar(255),

Address varchar(255),

City varchar(255)

);

The PersonID column is of type int and will hold an integer.

The LastName, FirstName, Address, and City columns are of type varchar

and will hold characters, and the maximum length for these fields is 255

characters.

The empty "Persons" table will now look like this:

Tip: The empty "Persons" table can now be filled with data with the

SQL INSERT INTO statement.

Create Table Using Another Table

A copy of an existing table can also be created using CREATE TABLE.

The new table gets the same column definitions. All columns or specific

columns can be selected.

https://www.w3schools.com/sql/sql_insert.asp

Dr. M. Sivasankari – PLUNGE INTO PHP

92

If you create a new table using an existing table, the new table will be filled

with the existing values from the old table.

Syntax

CREATE TABLE new_table_name AS

SELECT column1, column2,...

FROM existing_table_name

WHERE ;

The following SQL creates a new table called "TestTables" (which is a

copy of the "Customers" table):

CREATE TABLE TestTable AS

SELECT customername, contactname

FROM customers;

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

Syntax

It is possible to write the INSERT INTO statement in two ways.

The first way specifies both the column names and the values to be

inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

If you are adding values for all the columns of the table, you do not need to

specify the column names in the SQL query. However, make sure the order

of the values is in the same order as the columns in the table. The INSERT

INTO syntax would be as follows:

Dr. M. Sivasankari – PLUNGE INTO PHP

93

Note: Be careful when updating records in a table! Notice the WHERE

clause in the UPDATE statement. The WHERE clause specifies which

record(s) that should be updated. If you omit the WHERE clause, all

records in the table will be updated!

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

INSERT INTO Example

The following SQL statement inserts a new record in the "Customers"

table:

INSERT INTO Customers (CustomerName, ContactName,

Address, City, PostalCode, Country)

VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen

21', 'Stavanger', '4006', 'Norway');

The SQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

UPDATE Table

The following SQL statement updates the first customer (CustomerID = 1)

with a new contact person and a new city.

Dr. M. Sivasankari – PLUNGE INTO PHP

94

Note: Be careful when deleting records in a table! Notice the WHERE

clause in the DELETE statement. The WHERE clause specifies which

record(s) should be deleted. If you omit the WHERE clause, all records in

the table will be deleted!

EXAMPLE

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

The SQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

Syntax

DELETE FROM table_name WHERE condition;

SQL DELETE Example

The following SQL statement deletes the customer "AlfredsFutterkiste"

from the "Customers" table:

DELETE FROM Customers WHERE CustomerName='AlfredsFutter

kiste';

Select Data/ Retrieved Data From a MySQL Database

The SELECT statement is used to select data from one or more tables:

SELECT column_name(s) FROM table_name

or we can use the * character to select ALL columns from a table:

SELECT * FROM table_name

 FULL TEXT SEARCH

Full-Text Search in MySQL server lets users run full-text queries

against character-based data in MySQL tables. You must create a full-text

Dr. M. Sivasankari – PLUNGE INTO PHP

95

index on the table before you run full-text queries on a table. The full-text

index can include one or more character-based columns in the table.

FULLTEXT is the index type of full-text index in MySQL.

InnoDB or MyISAM tables use Full-text indexes.

Full-text indexes can be created only for VARCHAR, CHAR or

TEXT columns.

A FULLTEXT index definition can be given in the CREATE

TABLE statement or can be added later using ALTER TABLE or

CREATE INDEX.

Large data sets without FULLTEXT index is much faster to load

data into a table than to load data into a table which has an existing

FULLTEXT index. Therefore create the index after loading data.

Syntax

MATCH (col1,col2,col3...) AGAINST (expr [search_modifier])

 col1, col2, col3 - Comma-separated list that names the columns to

be searched

 AGAINST() takes a string to search, and an optional modifier that

indicates what type of search to perform.

 The search string must be a string value. The value is constant

during query evaluation.

There are three types of full-text searches:

 Natural Language Full-Text Searches

 Boolean Full-Text searches

 Query expansion searches

Note: Some words are ignored in full-text searches.

https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php
https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php
https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php
https://www.w3resource.com/mysql/creating-using-databases-tables/create-table.php

Dr. M. Sivasankari – PLUNGE INTO PHP

96

SELECT*FROMtable_nameWHEREMATCH(col1, col2)

AGAINST('search terms'INNATURALLANGUAGEMODE)

 The minimum length of the word for full-text searches as of

follows:

o Three characters for InnoDB search indexes.

o Four characters for MyISAM search indexes.

 Stop words are words that are very common such as 'on', 'the' or 'it',

appear in almost every document. These types of words are ignored

during searching.

Natural Language Full-Text Searches

Natural language full-text search interprets the search string as a free text

(natural human language) and no special operators are required.

Full-text searches are natural language searches if the IN NATURAL

LANGUAGE MODE modifier (see the following syntax) is given or not.

MATCH() function searches a string against a text collection (A set of one

or more columns included in a FULLTEXT index.).

For each row in the table, MATCH() returns a relevance value; that is, a

similarity measure between the search string (given as the argument to

AGAINST() function) and the text in that row in the columns named in the

MATCH() list.

The basic format of a natural Language null-text searches mode query is as

follows:

Code

Example

mysql> CREATE TABLE tutorial (

Dr. M. Sivasankari – PLUNGE INTO PHP

97

id INT UNSIGNED AUTO_INCREMENT NOT NULL

PRIMARY KEY,

title VARCHAR(200),

description TEXT,

FULLTEXT(title,description)

) ENGINE=InnoDB;

Query OK, 0 rows affected (2.40 sec)

Let search the string 'left right' in description field:

mysql> SELECT * FROM tutorial WHERE

MATCH(title,description) AGAINST ('left right' IN NATURAL

LANGUAGE MODE);

By default, the search is case-insensitive. To perform a case-sensitive full-

text search, use a binary collation for the indexed columns. For example, a

column that uses the latin1 character set of can be assigned a collation of

latin1_bin to make it case sensitive for full-text searches.

When MATCH() is used in a WHERE clause, as in the example shown

earlier, the rows returned are automatically sorted with the highest

relevance first.

 Relevance values are nonnegative floating-point numbers.

 Zero relevance means no similarity.

 Relevance is computed based on -

o the number of words in the row

o the number of unique words in that row

o the total number of words in the collection

o the number of documents (rows) that contain a particular

word.

Dr. M. Sivasankari – PLUNGE INTO PHP

98

The following example shows how to retrieve the relevance values

explicitly:

mysql> SELECT id, MATCH(title,description) AGAINST ('left

right' IN NATURAL LANGUAGE MODE) AS score FROM

tutorial;

+----+---------------------+

| id | score |

+----+---------------------+

| 1 | 0 |

| 2 | 0 |

| 3 | 0.45528939366340637 |

| 4 | 0 |

| 5 | 0.8331640362739563 |

| 6 | 0 |

+----+---------------------+

6 rows in set (0.00 sec)

Count matches

To count matches, you can use a query like this:

mysql> SELECT COUNT(*) FROM tutorial WHERE

MATCH(title,description) AGAINST ('left right' IN NATURAL

LANGUAGE MODE);

+----------+

| COUNT(*) |

+----------+

| 2 |

1 row in set (0.03 sec)

Boolean Full-Text Searches

A boolean search interprets the search string using the rules of a

special query language.

Dr. M. Sivasankari – PLUNGE INTO PHP

99

SELECT*FROMtable_nameWHEREMATCH(col1, col2)

AGAINST('search terms'INBOOLEANMODE)

The string contains the words to search for. It can also contain

operators that specify requirements such that a word must be present or

absent in matching rows, or that it should be weighted higher or lower than

usual.

Certain common words (stopwords) are omitted from the search

index and do not match if present in the search string.

MySQL can perform boolean full-text searches using the IN

BOOLEAN MODE modifier. With this modifier, certain characters have

special meaning at the beginning or end of words in the search string.

The basic format of a boolean mode query is as follows:

Code

Characteristics of Boolean Full-Text searches

Do not use the 50% threshold that applies to MyISAM search indexes.

 Do not automatically sort rows in order of decreasing relevance.

 Boolean queries against a MyISAM search index can work even

without a FULLTEXT index.

 The minimum and maximum word length full-text parameters

apply:

o For InnoDB search indexes, innodb_ft_min_token_size and

innodb_ft_max_token_size

o for MyISAM search indexes, ft_min_word_len and

ft_max_word_len.

 InnoDB full-text search does not support the use of multiple

operators on a single search word.

Dr. M. Sivasankari – PLUNGE INTO PHP

100

The boolean full-text search supports the following operators:

Operator Description Example

+ A leading plus sign indicates that a

word must be present in each row that

is returned.

'+join +union'

Find rows that

contain both words.

'+join union'

Search rows that

contain the word

'join', but rank rows

higher if they also

contain 'union'

- A leading minus sign indicates that a

particular word must not be present in

any of the rows that are returned. The

- operator acts only to exclude rows

that are otherwise matched by other

search terms.

'+join -union'

Find rows that

contain the word 'join'

but not 'union'.

(no

operator)

By default, the word is optional, but

the rows that contain it are rated

higher.

'join -union'

Search rows that

contain at least one of
the two words.

>< These two operators are used to

change a word's contribution to the

relevance value that is assigned to a

row. The > operator increases the

contribution and the < operator

decreases it.

'+join +(>left <right)'

Find rows that

contain the words

'join' and 'left' or 'join'

and 'right' (in any

order), but rank 'join

left' higher than 'join

right'.

() Parentheses group words into

subexpressions. Parenthesized groups

can be nested.

~ A leading tilde acts as a negation

operator, causing the word's

contribution to the row's relevance to

be negative.

'+join ~left'

Find rows that

contain the word

'join', but if the row

also contains the word

'left', rate it lower

than if row does not.

* The asterisk serves as the truncation

(or wildcard) operator. Unlike the

other operators, it is appended to the

word to be affected. Words match if

'join*'

Find rows that

contain words such as

'join', 'joins', 'joining'

Dr. M. Sivasankari – PLUNGE INTO PHP

101

 they begin with the word preceding

the * operator.

etc.

" A phrase that is enclosed within

double quote (―"‖) characters matches

only rows that contain the phrase

literally, as it was typed.

'"left join"'

Find rows that

contain the exact

phrase "let join".

Example: Boolean Full-Text Searches

In the following query, the query retrieves all the rows that contain

the word 'Joins' but not 'right'.

mysql> SELECT * FROM tutorial WHERE MATCH(title,description)

AGAINST ('+Joins -right' IN BOOLEAN MODE);

- - - - - -

Dr. M. Sivasankari – PLUNGE INTO PHP

102

UNIT 05

USING MYSQL AND PHP TOGETHER

Introduction

PHP has included support for MySQL since version 3.x, although

the procedureto activate this support has varied widely between versions.

PHP 4.x included a setof MySQL client libraries, which were activated by

default. PHP 5.x no longerbundles these libraries, however, due to licensing

issues, so you need to obtain andinstall them separately. Then, you need to

explicitly activate the MySQL extension—ext/mysql—by adding the --

with-mysql option to PHP‗s configure script.

The MySQL API built into PHP is designed to accomplish four primary

goals

■ Manage database connections

■ Execute queries

■ Process query results

■ Provide debugging and diagnostic information

To illustrate these functions, let‗s create a simple MySQL database table,

andthen use PHP to connect to the server, retrieve a set of results, and

format them fordisplay on a web page. The sample table used here consists

of a single table nameditems, which holds a list of products and their

prices. Here are the SQL queriesneeded to create and initialize this table:

CREATE TABLE items (itemID int(11) NOT NULL auto_increment,

itemName varchar(255) NOT NULL default '',itemPrice float NOT NULL

default '0',PRIMARY KEY (itemID)) TYPE=MyISAM;

INSERT INTO items VALUES (1, 'Paperweight', '3.99');

INSERT INTO items VALUES (2, 'Key ring', '2.99');

Dr. M. Sivasankari – PLUNGE INTO PHP

103

INSERT INTO items VALUES (3, 'Commemorative plate', '14.99');

INSERT INTO items VALUES (4, 'Pencils (set of 4)', '1.99');

INSERT INTO items VALUES (5, 'Coasters (set of 3)', '4.99');

You can enter these commands either interactively or noninteractively

throughthe MySQL client program. Once entered, run a SELECT query to

ensure that thedata has been successfully imported.

mysql>SELECT * FROM items;

+--------+---------------------+-----------+

| itemID | itemName | itemPrice |

+--------+---------------------+-----------+

| 1 |

| 2 |

Paperweight

Key ring

| 3.99 |

| 2.99 |

| 3 | Commemorative plate | 14.99 |

| 4 | Pencils (set of 4) | 1.99 |

| 5 | Coasters (set of 3) | 4.99 |

+--------+---------------------+-----------+

5 rows in set (0.00 sec)

Now, to do the same thing using PHP, create the following PHP script:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to

connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT * FROM items';

$result = mysql_query($query) or die ('Error in query: $query. ' .

mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// print HTML table

Dr. M. Sivasankari – PLUNGE INTO PHP

104

echo '<table width=100% cellpadding=10 cellspacing=0

border=1>';

echo'<tr><td>ID</td><td>Name</td><td>Pri

ce</td></tr>';

// iterate over record set

// print each field

while($row = mysql_fetch_row($result))

{

echo '<tr>';

echo '<td>' . $row[0] . '</td>';

echo '<td>' . $row[1] . '</td>';

echo '<td>' . $row[2] . '</td>';

echo '</tr>';

}

echo '</table>';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Managing Database Connections

In PHP, connections to the MySQL server are opened via the

mysql_connect()function, which accepts a number of different arguments:

the hostname (and,optionally, the port number) of the MySQL server, the

MySQL username to gainaccess, and the corresponding password.

Here are some examples:

<?php

// open connection to MySQL server

$connection = mysql_connect('mydbserver', 'guest', 'pass');

// print status message

if ($connection)

{

echo 'Connected!';

}

Dr. M. Sivasankari – PLUNGE INTO PHP

105

else

{

}

?>

echo 'Could not connect!';

Another example

<?php

// open connection to MySQL server

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

// print status message

echo $connection ? 'Connected!' : 'Could not connect!';

?>

Normally, the link to the server remains open for the lifetime of the

script,and is automatically closed by PHP once the script completes

executing. Thatsaid, just as it‗s good manners to close the doors you open,

it‗s good programmingpractice to explicitly close the MySQL connection

once you finish using it.

This is accomplished by calling the mysql_close() function, which

closesthe link and returns the used memory to the system. Here is an

example:

<?php

// open connection to MySQL server

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

if ($connection)

{

// close connection

mysql_close($connection);

}

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

106

 PERFORMING QUERIES

 Once a connection has been opened, the next step is to select a

database for use.This is done with the mysql_select_db() function,

which accepts a databasename as argument.

 It can optionally also accept a link identifier; if this is notspecified,

the function defaults to using the last opened connection. Here‗s

anexample of how it may be used:

<?php

// select the database "mydb"

mysql_select_db('mydb');

?>

 Once the database has been selected, it becomes possible to execute

queries onit.

 In PHP, MySQL queries are handled via the mysql_query()

function, whichaccepts a query string and a link identifier and sends

it to the server represented bythe link identifier.

 If no link identifier is specified, the last opened link is used asthe

default. Here is an example:

<?php

// execute query

$result = mysql_query('SELECT * FROM items WHERE price <

10.00');

?>

Depending on the type of query, the return value of mysql_query() differs:

■ If the query is a data-retrieval query—for example, a SELECT or

SHOWquery—then mysql_query() returns a resource identifier pointing

tothe query‗s result set, or false on failure. The resource identifier can

thenbe used to process the records in the result set.

Dr. M. Sivasankari – PLUNGE INTO PHP

107

■ If the query is a data manipulation query—for example, an INSERT

orUPDATE query—then mysql_query() returns true if the query

succeeds,or false on failure.The result-set processing functions outlined in

the next section can now beused to extract data from the return value of

mysql_query().

 Processing Result Sets
The return value of a successful mysql_query() invocation can be

processedin a number of different ways, depending on the type of query

executed.

Queries Which Return Data

 For SELECT-type queries, a number of techniques exist to process

the returneddata. The simplest is the mysql_fetch_row() function,

which returns eachrecord as a numerically indexed PHP array.

 Individual fields within the recordcan then be accessed using

standard PHP-array notation.

The following exampleillustrates this:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to

connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) or die ('Error in query: $query. ' .

mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set

Dr. M. Sivasankari – PLUNGE INTO PHP

108

// print each field

while($row = mysql_fetch_row($result))

{

echo $row[0] . " - " . $row[1] . "\n";

}

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

Queries That Alter Data

 You can also use PHP‗s MySQL API for queries that don‗t return a

result set, forexample, INSERT or UPDATE queries.

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

109

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Item name: <input type="text" name="name">

Item price: <input type="text" name="price">

<input type="submit" name="submit">

</form>

<?php

}

else

{

// get form input

// escape input values for greater safety

$name = (trim($_POST['name']) == '') ? die ('ERROR: Enter a

name') : mysql_escape_string($_POST['name']);

$price = (trim($_POST['price'] == '') ||

!is_numeric($_POST['price'])) ? die ('ERROR: Enter a price') :

$_POST['price'];

// open connection

$connection = mysql_connect('localhost', 'guest', 'pass') or die

('Unable to connect!');

// select database

mysql_select_db('db2') or die ('Unable to select database!');

// create query

$query = "INSERT INTO items (itemName, itemPrice) VALUES

('$name', '$price')";

// execute query

$result = mysql_query($query) or die ("Error in query: $query. " .

mysql_error());

// print ID of inserted record

echo 'New record inserted with ID ' .mysql_insert_id() . '<br \>';

// print number of rows affected

echo mysql_affected_rows() . ' record(s) affected';

Dr. M. Sivasankari – PLUNGE INTO PHP

110

// close connection

mysql_close($connection);

}

?>

</body>

</html>

The previous example has three new functions:

 The mysql_escape_string() function escapes special characters(like

quotes) in the user input, so it can be safely entered into the

database.If the magic_quotes_gpc setting in your PHP configuration

file isenabled, you might need to first call stripslashes() on the user

inputbefore calling mysql_escape_string(), to avoid characters

gettingescaped twice.

 The mysql_insert_id() function returns the ID generated by

theprevious INSERT query (useful only if the table into which the

INSERToccurs contains an AUTO_INCREMENT field).

 The mysql_affected_rows() function returns the total number

ofrows affected by the last operation.All these functions come in

handy when dealing with queries that alter the

database.

 Handling Errors

 PHP‗s MySQL API also comes with some powerful error-

trackingfunctions that can reduce debugging time. Take a look at

the following example,which contains a deliberate error in the

SELECT query string:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

Dr. M. Sivasankari – PLUNGE INTO PHP

111

// create and execute query

$query = 'SELECT FROM items';

$result = mysql_query($query);

// if no result

// print MySQL error message

if(!$result)

{

echo 'MySQL error ' .mysql_errno() . ': ' . mysql_error();

mysql_close($connection);

}

?>

 The mysql_errno() function displays the error code returned by

MySQLif there‗s an error in your SQL statement, while the

mysql_error() functionreturns the actual error message.

 Turn these both on, and you‗ll find they cansignificantly reduce the

time you spend fixing bugs.

 Setting Input Constraints at the Database Layer

 When it comes to maintaining the integrity of your database, a

powerful tool isprovided by the database system itself: the

capability to restrict the type of data enteredinto a field or make

certain fields mandatory, using field definitions or constraints.

Using the NULL Modifier

 MySQL enables you to specify whether a field isallowed to be

empty or if it must necessarily be filled with data, by placing

theNULL and NOT NULL modifiers after each field definition.

 This is a good wayto ensure that required fields of a record are

never left empty, because MySQL willsimply reject entries that do

not have all the necessary fields filled in.

 Here‗s anexample of this in action:

Dr. M. Sivasankari – PLUNGE INTO PHP

112

mysql>CREATE TABLE products (->id int(4),->name varchar(50)->);

Query OK, 0 rows affected (0.06 sec)

Here, the name field can hold NULL values, which means the following

INSERT will go unchallenged,

mysql>INSERT INTO products VALUES (NULL, NULL);

Query OK, 1 row affected (0.06 sec)

and create the following nonsense entry in the table:

mysql>SELECT * FROM products;

+------+------+

| id | name |

+------+------+

| NULL | NULL |

+------+------+

1 row in set (0.11 sec)

Now, look what happens if you make the name field mandatory:

mysql>CREATE TABLE products (->id int(4),->name varchar(50)

NOT NULL->);

Query OK, 0 rows affected (0.05 sec)

mysql>INSERT INTO products VALUES (NULL, NULL);

ERROR 1048: Column 'name' cannot be null

Of course, because MySQL makes a distinction between a NULL value

andan empty string (''), the following record—which is also meaningless—

wouldbe accepted.

mysql>INSERT INTO products VALUES ('', '');

Query OK, 1 row affected (0.05 sec)

Dr. M. Sivasankari – PLUNGE INTO PHP

113

mysql>SELECT * FROM products;

+------+------+

| id | name |

+------+------+

| 0 | |

+------+------+

1 row in set (0.00 sec)

Thus, while the NOT NULL modifier can help reduce the incidence of

emptyor incomplete records in a database.

Using the UNIQUE Modifier

Using MySQL‗s built-in validation mechanisms has an important

advantage: itmakes it easy to perform certain types of validation that would

be lengthy andtime-consuming to write code for.

Consider, for example, the situation of ensuringthat a particular field

contains only unique values. MySQL makes it possible todo this, simply by

attaching a UNIQUE modifier to the field, as in the followingexample:

mysql>CREATE TABLE users (username VARCHAR(50) NOT

NULL UNIQUE);

Query OK, 0 rows affected (0.06 sec)

mysql>INSERT INTO users (username) VALUES ('tim');

Query OK, 1 row affected (0.06 sec)

mysql>INSERT INTO users (username) VALUES ('jon');

Query OK, 1 row affected (0.00 sec)

Now, if you attempt to enter another record with the value timin

theusername field, MySQL will reject your entry with an error:

mysql>INSERT INTO users (username) VALUES ('tim');

ERROR 1062: Duplicate entry 'tim' for key 1

Dr. M. Sivasankari – PLUNGE INTO PHP

114

Using Field Data Types

 MySQL also requires you to specify the typeof data a particular

field can hold at the time of defining a table. Input that does

notmatch the named data type is automatically converted into a

more acceptable, thoughincorrect, value.

Here‗s an example of this:

mysql>CREATE TABLE items (->id INT(2) NOT NULL,->price

INT(4) NOT NULL->);

Query OK, 0 rows affected (0.05 sec)

mysql>INSERT INTO items (id, price) VALUES (1, 'five');

Query OK, 1 row affected (0.00 sec)

mysql>SELECT * FROM items;

+----+-------+

| id | price |

+----+-------+

| 1 | 0 |

+----+-------+

1 row in set (0.05 sec)

In this case, because the price field has been constrained to only

storeintegers, the string five has been converted into a 0 and saved.

 VALIDATING INPUT AT THE APPLICATION LAYER

 When it comes to catching errors in user input, the best place to do

this is at thepoint of entry—the application itself. That‗s why a

good part of this chapter isdevoted to showing you techniques you

can use to catch common input errors andensure that they don‗t get

into your database.

Dr. M. Sivasankari – PLUNGE INTO PHP

115

Checking for Required Values

 This can result in a database with numerous emptyrecords, and

these empty records can, in turn, affect the accuracy of your

queries.

mysql>CREATE TABLE users (

->username varchar(8) NOT NULL DEFAULT '',

->password varchar(8) NOT NULL DEFAULT ''

->) TYPE=MyISAM;

Query OK, 0 rows affected (0.05 sec)

When inserting a record into this table, values must be specified for

bothusername and password fields (this is reinforced by the use of NOT

NULLconstraints on these fields). Here‗s a script that enforces these

constraints at the application level

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" name="submit" value="Sign Up">

Dr. M. Sivasankari – PLUNGE INTO PHP

116

</form>

<?php

}

else

{

// form submitted

// check the username field

$username = ↵

(!isset($_POST['username']) || trim($_POST['username']) == "")?

die ('ERROR: Enter a username') :

mysql_escape_string(trim($_POST['username']));

// check the password field

$password = (!isset($_POST['password']) ||

trim($_POST['password'] == ""))? die ('ERROR: Enter a password')

: mysql_escape_string(trim($_POST['password']));

// connect to database

// open connection

$connection = mysql_connect('localhost', 'guest', 'pass') or die

('Unable to connect!');

// select database

mysql_select_db('db2') or die ('Unable to select database!');

// create query

$query = "INSERT INTO users (username, password)VALUES

('$username', '$password')";

// execute query

$result = mysql_query($query)or die ("Error in query: $query. " .

mysql_error());

// close connection

mysql_close($connection);

}

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

117

</body>

</html>

Restricting the Size of Input Data

 MySQL enables you to control the length of a particularfield by

adding a size modifier to the field data type.

 Now, the way MySQL works,values greater than the specified

length are automatically truncated, with no notificationor exception

generated to let the user know about the change.

 This is disturbing, because it means that user data can easily get

corruptedwithout the user‗s awareness.

mysql>CREATE TABLE news (

->id INT (10) NOT NULL,

->title VARCHAR(50) NOT NULL

->);

Query OK, 0 rows affected (0.05 sec)

And here‗s the PHP script that replicates this constraint in a form:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Title: <input type="text" name="title">

Dr. M. Sivasankari – PLUNGE INTO PHP

118

<input type="submit" name="submit" value="Save">

</form>

<?php

}

else

{

// form submitted

// trim the title field

$title = trim ($_POST['title']);

// check its length

if (strlen($title) > 50)

{

die ('ERROR: Title contains more than 50 characters');

}

// connect to database

// save record

}

?>

</body>

</html>

Checking the Type of Input Data

You‗ve already seen how MySQL automatically ―corrects‖ values that

don‗t matchthe data type specified in the table definition. Often, the

assumptions MySQL makeswhen performing these corrections aren‗t true,

and the corrected (but incorrect)values subsequently affect the integrity of

your database. Therefore, an importanttest of user input involves checking

the data type of input values against thedatabase‗s expectations, and raising

an error in the event of a mismatch.

Dr. M. Sivasankari – PLUNGE INTO PHP

119

To see an example of this, consider the following table definition:

mysql>CREATE TABLE items (

->itemIDINT(11) NOT NULL AUTO_INCREMENT,

->itemNameVARCHAR(255) NOT NULL DEFAULT '',

->itemSPrice FLOAT NOT NULL DEFAULT '0',

->itemCPrice FLOAT NOT NULL DEFAULT '0',

->itemQuantityINT(11) NOT NULL DEFAULT '0',

->PRIMARY KEY (itemID)

->) TYPE=MyISAM;

Query OK, 0 rows affected (0.07 sec)

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Item name:

<input type="text" name="itemName">

Item sale price:

<input type="text" name="itemSPrice">

Item cost price:

Dr. M. Sivasankari – PLUNGE INTO PHP

120

<input type="text" name="itemCPrice">

14

Item quantity:

<input type="text" name="itemQuantity">

<input type="submit" name="submit" value="Enter Data">

</form>

<?php

}

else

{

// form submitted

// check the itemName field

$itemName = (!isset($_POST['itemName']) ||

trim($_POST['itemName']) == "") ? die ('ERROR: Enter the item

name') : mysql_escape_string(trim($_POST['itemName']));

// check the itemSPrice field

if(!isset($_POST['itemSPrice']) || ↵

trim($_POST['itemSPrice']) == "")

{

die ('ERROR: Enter the item\'s selling price');

}

elseif(!is_numeric(trim($_POST['itemSPrice'])))

{

die ('ERROR: Enter numeric value for the item\'s selling

price');

}

else

Dr. M. Sivasankari – PLUNGE INTO PHP

121

{

$itemPrice = floatval(trim($_POST['itemSPrice']));

}

"")

// check the itemCPrice field

if(!isset($_POST['itemCPrice']) || trim($_POST['itemCPrice']) ==

{

die ('ERROR: Enter the item\'s cost price');

}

elseif (!is_numeric(trim($_POST['itemCPrice'])))

{

price');

}

else

{

}

die ('ERROR: Enter numeric value for the item\'s cost

$itemCost = floatval(trim($_POST['itemCPrice']));

== "")

// check the itemQuantity field

if(!isset($_POST['itemQuantity']) || trim($_POST['itemQuantity'])

{

die ('ERROR: Enter the quantity');

}

elseif (!is_numeric(trim($_POST['itemQuantity'])))

{

}

else

{

die ('ERROR: Enter numeric value for quantity');

$itemQuantity = intval(trim($_POST['itemQuantity']));

Dr. M. Sivasankari – PLUNGE INTO PHP

122

}

// connect to database

// save record

}

?>

</body>

</html>

Checking for Illegal Input Values

In addition to the tests listed in previous sections, an application‗s

particular businesslogic often demands custom validation routines of its

own. To illustrate this, considerthe example of a form that asks the user to

enter a positive two-digit number. Here,it is necessary to write a validation

test to check if the user‗s input falls between10 and 99 (both inclusive) and

to display an error if it doesn‗t. Take a look at thenext script, which

demonstrates what the code for such a validation test wouldlook like:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Enter any positive two-digit number:

<input type="text" name="num" size="2">

Dr. M. Sivasankari – PLUNGE INTO PHP

123

<input type="submit" name="submit" value="Check">

</form>

<?php

}

else

{

// form submitted

// check for presence of number

$num = ↵

(!isset($_POST['num']) || trim($_POST['num']) == "" || ↵

!is_numeric($_POST['num'])) ↵

? die ('ERROR: Enter a number') : trim($_POST['num']);

// check for number range

if ($num < 10 || $num > 99)

{

die ('ERROR: Enter a number between 10 and 99');

}

}

?>

</body>

</html>

This type of custom validation can play an important role in avoiding

commonerrors, such as the dreaded division-by-zero error. Harking back to

the example inthe previous section, assume you have a table containing the

following data,

mysql>SELECT * FROM items;

+--------+----------+------------+------------+--------------+

| itemID | itemName | itemSPrice | itemCPrice | itemQuantity |

+--------+----------+------------+------------+--------------+

| 1 | Syringe | 10 | 5 | 200 |

| 2 | Swab | 1 | 0.25 | 1000 |

Dr. M. Sivasankari – PLUNGE INTO PHP

124

| 3 | Pump | 95 | 0 | 5 |

+--------+----------+------------+------------+--------------+

3 rows in set (0.00 sec)

and you‗d like to calculate the percentage profit on each item using the

formula

Percentage Profit = (Profit/Cost Price) * 100. You‗d probably

need to run a SELECT query like this:

mysql>SELECT itemName, (((itemSPrice - itemCPrice)/itemCPrice) *

100) AS percentProfit FROM items;

+----------+---------------+

| itemName | percentProfit |

+----------+---------------+

| Syringe | 100 |

| Swab | 300 |

| Pump | NULL |

+----------+---------------+

3 rows in set (0.00 sec)

Here‗s anexample of what that test might have looked like:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

125

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Item name:

<input type="text" name="itemName">

Item sale price:

<input type="text" name="itemSPrice">

Item cost price:

<input type="text" name="itemCPrice">

Item quantity:

<input type="text" name="itemQuantity">

<input type="submit" name="submit" value="Enter Data">

</form>

<?php

}

else

{

// form submitted

// check the itemCPrice field

$itemCost = (↵

!isset($_POST['itemCPrice']) || trim($_POST['itemCPrice']) == "") ↵

? die ('ERROR: Enter the item\'s cost price') :↵

(!is_numeric(trim($_POST['itemCPrice']))) ↵

? die ('ERROR: Enter numeric value for the item\'s cost price') :↵

floatval(trim($_POST['itemCPrice']));

Dr. M. Sivasankari – PLUNGE INTO PHP

126

// check if itemCPrice field is equal to zero

if($itemCost == 0)

{

die ('ERROR: Please enter an item cost price greater ↵

than zero');

}

// connect to database

// save record

}

?>

 VALIDATING DATES

Dates often play an important role in an application‗s business

logic, and usersare prone to errors when entering these values. Luckily,

PHP comes with acheckdate() function that provides an easy way to

validate user-provideddate values.

To see how this works, consider the following simple script, which asks

theuser to enter a date, and then tests it for validity:

<html>

<head>

<basefont face="Arial">

</head>

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Day <input type="text" name="day" size="2">

Dr. M. Sivasankari – PLUNGE INTO PHP

127

Month <input type="text" name="month" size="2">

Year <input type="text" name="year" size="2">

<input type="submit" name="submit" value="Check">

</form>

<?php

}

else

{

// form submitted

// check date

if (!checkdate($_POST['month'], $_POST['day'], $_POST['year'])) ↵

{

die ('ERROR: Enter a valid date');

}

}

?>

</body>

</html>

Validating Multiple-Choice Input

Checkboxes and drop-down lists are an important component of

web forms, and it‗soften necessary to include validation for these controls

in your PHP applications.Normally, the user‗s selections from these

controls are submitted to the formprocessor in the form of an array, and it‗s

necessary to use PHP‗s array functions tovalidate them.

<html>

<head>

<basefont face="Arial">

</head>

Dr. M. Sivasankari – PLUNGE INTO PHP

128

<body>

<?php

if (!$_POST['submit'])

{

// form not submitted

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Username:

<input type="text" name="username">

<p />

Password:

<input type="password" name="password">

<p />

Date of Birth:

Month <input type="text" name="month" size="2">

Day <input type="text" name="day" size="2">

Year <input type="text" name="year" size="4">

<p />

Hobbies (select at least three):

<input type="checkbox" name="hobbies[]" value="Sports">Sports

<input type="checkbox" name="hobbies[]" value="Reading">Reading

<input type="checkbox" name="hobbies[]" value="Travel">Travel

<input type="checkbox" name="hobbies[]" value="Television">Television

<input type="checkbox" name="hobbies[]" value="Cooking">Cooking

<p />

Subscriptions (Select at least two):

Dr. M. Sivasankari – PLUNGE INTO PHP

129

<select name="subscriptions[]" multiple>

<option value="General">General Newsletter</option>

<option value="Members">Members Newsletter</option>

<option value="Premium">Premium Newsletter</option>

</select>

<p />

<input type="submit" name="submit" value="Sign Up">

</form>

<?php

}

else

{

// form submitted

// validate "username", "password" and "date of birth" fields

$username = (!isset($_POST['username']) || ↵

trim($_POST['username']) == "") ↵

? die ('ERROR: Enter a username') : trim($_POST['username']);

$password = (!isset($_POST['password']) ↵

|| trim($_POST['password'] == "")) ↵

? die ('ERROR: Enter a password') : trim($_POST['password']);

if (!checkdate($_POST['month'], $_POST['day'], $_POST['year']))

{

die ('ERROR: Enter a valid date');

}

// check the "hobbies" field for valid values

$hobbies = ((sizeof($_POST['hobbies']) < 3) ?↵

die ('ERROR: Please select at least 3 hobbies') :↵

implode(',', $_POST['hobbies']));

// check the "subscriptions" field for valid values

$subscriptions = ((sizeof($_POST['subscriptions']) < 2) ?↵

die ('ERROR: Please select at least 2 subscriptions') :↵

Dr. M. Sivasankari – PLUNGE INTO PHP

130

implode(',', $_POST['subscriptions']));

// connect to database

// save record

}

?>

</body>

</html>

Formatting Character Data

 A lot of your MySQL data is going to be stored as strings or text

blocks, in CHAR,VARCHAR, or TEXT fields.

 It‗s essential that you know how to manipulate this stringdata and

adjust it to fit the requirements of your application user interface.

Concatenating String Values

 String together the variables you want to concatenate using the PHP

concatenation

operation, a period (.).

 Concatenating fields from a MySQL result set is equallysimple—

just assign the field values to PHP variables and concatenate the

variablestogether in the normal manner.

To see how this works, consider the following table:

mysql>SELECT * FROM users;

+-----------+---------+----------+

| username | fname | lname |

+-----------+---------+----------+

| matt | Matthew | Johnson |

| har56 | Harry| Thompson |

| kellynoor | Kelly | Noor |

| jimbo2003 | Jim | Doe |

Dr. M. Sivasankari – PLUNGE INTO PHP

131

| x | Xavier | Belgudui |

+-----------+---------+----------+

5 rows in set (0.00 sec)

Now, assume you need to concatenate the first- and last-name fields into

a single value (a common requirement).

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to

connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT fname, lname FROM users';

$result = mysql_query($query) or die ('Error in query: $query. ' .

mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// print HTML table

echo '';

// iterate over record set

// print each field

while($row = mysql_fetch_object($result))

{

// prints in format "last-name, first-name"

echo '' . $row->lname . ', ' . $row->fname;

}

Dr. M. Sivasankari – PLUNGE INTO PHP

132

echo '';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

 PADDING STRING VALUES

 PHP trim() function, used to strip leading andtrailing white space

from string values prior to testing them for validity or insertingthem

into a database.

 However, PHP also comes with the str_pad() function,which does

just the reverse: it pads strings to a specified length using either

whitespace or a user-specified character sequence.

 This can come in handy if you needto artificially elongate string

values for display or layout purposes.

Here‗s a table containing string values of differing lengths:

mysql>SELECT * FROM ingredients;

+----------------+

| name |

+----------------+

Dr. M. Sivasankari – PLUNGE INTO PHP

133

| cinnamon |

| ginger |

| red pepper |

| cloves |

| peas |

| tender coconut |

+----------------+

6 rows in set (0.00 sec)

And here‗s some PHP code that demonstrates padding them:

<html>

<head></head>

<body>

<pre>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT name FROM ingredients";

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set

// print each field

while($row = mysql_fetch_object($result))

Dr. M. Sivasankari – PLUNGE INTO PHP

134

{

// prints " name"

echo str_pad($row->name, 30, ' ', STR_PAD_LEFT) . '
';

}

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</pre>

</body>

</html>

The str_pad() function takes three parameters:

1. The variable to be padded, thesize it should be padded to,

and the character to use for padding.

2. By default, thefunction pads the string on the right side. You

can alter this default, however, bypassing one of the

constants STR_PAD_LEFT or STR_PAD_BOTH to the

functionas an optional fourth parameter.

3. The PHP str_pad() function is functionally equivalent to

MySQL‗s RPAD() and LPAD() functions, which pad a

string from the right and left, respectively.

Dr. M. Sivasankari – PLUNGE INTO PHP

135

The following snippets demonstrate how these functions work:

mysql>SELECT RPAD(name, 20,'_'), LPAD(name, 20, '_') ↵

FROM ingredients LIMIT 0,2;

+-------------------------+-------------------------+

| RPAD(name, 20,'_') | LPAD(name, 20, '_') |

+-------------------------+-------------------------+

| cinnamon | cinnamon |

+-------------------------+-------------------------+

| ginger | ginger |

+-------------------------+-------------------------+

2 rows in set (0.00 sec)

A word of caution: if the total length specified in the RPAD() and

LPAD()function call is less than the length of the field value, the value will

be truncated.

The next snippet illustrates this:

mysql>SELECT RPAD(name, 5, '_') FROM ingredients WHERE

name = 'cinnamon';

+------------------------+

| RPAD(name, 5, '_') |

+------------------------+

| cinna |

+------------------------+

1 row in set (0.00 sec)

Padding string values

PHP‗s str_pad() function, however, does not truncate strings inequivalent

situations.

Dr. M. Sivasankari – PLUNGE INTO PHP

136

Altering String Case

Four useful functions are here: strtolower(), which converts all

characters ina string to lowercase; strtoupper(), which converts all

characters to uppercase;ucfirst(), which converts the first character of a

string to uppercase, and theuseful ucwords(), which converts the first

character of all the words in a stringto uppercase.

The following example demonstrates these functions, using them on

thedifferent fields of the following table:

mysql>SELECT * FROM customers;

+-------+---------+----------------+----------+----------------------------+

| fname | lname | addr | city | email |

+-------+---------+----------------+----------+----------------------------+

| David | Johnson | 18 mcgooplace,ray road | boston |

David_Johnson@CORPMAIL.DOM |

| Flora | Bharti | 239/a harkrishnabldg,j b marg | hyderabad|

bharti@MyOwnCompany.in |

| joe | cool | 15 hill view,east end road | yorktown | joecool@guess.it |

+-------+---------+----------------+----------+----------------------------+

3 rows in set (0.00 sec)

Here‗s the code that reformats all this data to a more consistent casing

style:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mailto:David_Johnson@CORPMAIL.DOM
mailto:bharti@MyOwnCompany.in
mailto:joecool@guess.it

Dr. M. Sivasankari – PLUNGE INTO PHP

137

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT * FROM customers";

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set

// print each field

echo '<table border=1 cellpadding=10>';

echo '<tr><td>Name</td><td>Mailing Address</td>↵

<td>Email Address</td></tr>';

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo '<td>' .ucfirst($row->fname) . ' ' . ↵

ucfirst($row->lname) . '</td>';

echo '<td>' .ucwords($row->addr) . '
' .↵

strtoupper($row->city) . '</td>';

echo '<td>' .strtolower($row->email) . '</td>';

echo '</tr>';

}

echo '</table>';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

Dr. M. Sivasankari – PLUNGE INTO PHP

138

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

In the query string itself, by using

MySQL‗s UCASE() and LCASE() functions. The following snippet

illustrates this:

mysql>SELECT CONCAT_WS('\n', UCASE(addr), UCASE(city)) AS

address, LCASE(email) AS email FROM customers;

+---------------------------------+----------------------------+

| address | email |

+---------------------------------+----------------------------+

| 18 MCGOO PLACE, RAY ROAD | || BOSTON |

david_johnson@corpmail.dom |

| 239/A HARKRISHNA BLDG, J B MARG | || HYDERABAD|

bharti@myowncompany.in |

| 15 HILL VIEW, EAST END ROAD | || YORKTOWN | joecool@guess.it|

+---------------------------------+----------------------------+

3 rows in set (0.11 sec)

Dealing with Special Characters

 Special characters need to be protected,white space and line breaks

must be preserved, and potentially malicious HTMLcode must be

defanged. PHP comes with a number of functions designed

toperform just these tasks.

mailto:david_johnson@corpmail.dom
mailto:bharti@myowncompany.in
mailto:joecool@guess.it

Dr. M. Sivasankari – PLUNGE INTO PHP

139

Repeat Business

MySQL also provides a REPEAT() function, which can be used to display

a string field multiple times. Here‗s an example:

mysql>SELECT REPEAT('ho ', 5);

+------------------+

| REPEAT('ho ', 5) |

+------------------+

| ho hohohoho |

+------------------+

1 row in set (0.00 sec)

PHP‗s equivalent function is the str_repeat() function.

To illustrate, consider a table containing large blocks of text data, like the

following one:

mysql>SELECT id, data FROM newsdata LIMIT 0,1;

+----+--+

| id | data |

+----+--+

| 1 | Recently, I put together a Web site and the public actually liked |

my <html>&<javascript>. People... |

+----+--+

1 row in set (0.00 sec)

Now, here‗s how you‗d normally retrieve and display this information ina

web page:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

Dr. M. Sivasankari – PLUNGE INTO PHP

140

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to

connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT title, data FROM newsdata";

$result = mysql_query($query) or die ('Error in query: $query. ' .

mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set

while($row = mysql_fetch_object($result))

{

echo '' . $row->title . '';

echo '<p />';

echo $row->data;

echo '<p />';

}

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

Dr. M. Sivasankari – PLUNGE INTO PHP

141

</body>

</html>

 FORMATTING NUMERIC DATA

Both PHP and MySQL come with a full set of functionsto manipulate

integer and floating-point numbers, and to format large numericvalues for

greater readability.

Using Decimal and Comma Separators

When it comes to formatting numeric values in PHP, there are only two

functions:

number_format() and sprintf().

The number_format() function is used to display large numbers with

commaand decimal separators.

It can be used to control both the visibility and the appearanceof the

decimal digits, as well as the character used as the thousands separator.

To see how this works, consider the following table:

mysql>SELECT accountNumber, accountName, ↵

accountBalance FROM accounts;

+---------------+-------------+----------------+

| accountNumber | accountName | accountBalance |

+---------------+-------------+----------------+

| 1265489921 | James D | 2346.00000 |

| 2147483647 | Timothy J | 56347.50000 |

| 5739304575 | Harish K | 996564.87500 |

| 2173467271 | Kingston X | 634238.00000 |

| 2312934021 | Sue U | 34.67000 |

| 1248954638 | Ila T | 5373.81982 |

| 2384371001 | Anil V | 72460.00000 |

Dr. M. Sivasankari – PLUNGE INTO PHP

142

| 9430125467 | Katrina P | 100.00000 |

| 1890192554 | Pooja B | 17337.11914 |

| 2388282010 | Sue U | 388883.12500 |

| 2374845291 | Jacob N | 18410.00000 |

+---------------+-------------+----------------+

11 rows in set (0.05 sec)

Here‗s a PHP script that displays this information on a web page,

usingnumber_format() to display account balances with two decimal places

andcommas as thousand separators:

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT accountNumber, accountName, accountBalance↵

FROM accounts";

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

echo '<table border=1 cellpadding=10>';

echo '<tr><td>Number</td><td>Name</td><td>Balance</td></tr>';

// iterate over record set

Dr. M. Sivasankari – PLUNGE INTO PHP

143

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo '<td>' . $row->accountNumber . '</td>';

echo '<td>' . $row->accountName . '</td>';

echo '<td align=right>' .↵

number_format($row->accountBalance, 2, '.', ',') . '</td>';

echo '</tr>';

}

echo '</table>';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Note:

 You‗ve already used the echo() function extensively to display

output.

 However, echo()doesn‗t let you format output in any significant

manner, forexample, you can‗t write 1 as 00001.00. So, another

common function used to performthis type of number formatting is

Dr. M. Sivasankari – PLUNGE INTO PHP

144

the sprintf() function, which enables you todefine the format in

which data is output.

Consider the following example:

<?php

// returns 1.6666666666667

print(5/3);

?>

As you might imagine, that‗s not very friendly. Ideally, you‗d like to

display

just the significant digits of the result, so you‗d use the sprintf() function, as

in the following:

<?php

// returns 1.67

echo sprintf("%1.2f", (5/3));

?>

The PHP sprintf() function is similar to the sprintf() function thatC

programmers are used to.

To format the output, you need to use field templates,templates that

represent the format you‗d like to display. Common field templates are

listed as below.

Template What It Represents

%s string

%d decimal number

%x hexadecimal number

%o octal number

%f float number

Common Field Templates Supported by the sprintf() Function

Dr. M. Sivasankari – PLUNGE INTO PHP

145

Here are a few more examples of sprintf() in action:

<?php

// returns 00003

echo sprintf("%05d", 3);

// returns $25.99

echo sprintf("$%2.2f", 25.99);

// returns ****56

printf("%'*6d", 56);

?>

To see a real-world example of sprintf() usage, consider the

followingnumber-heavy MySQL table:

mysql>SELECT * FROM stocks;

+--------+--------------+------------+------------+------------+-----------+

| symbol | qty | buy | sell | high | low |

+--------+--------------+------------+------------+------------+-----------+

| HGTY | 17000.0000 | 289.9786 | 195.7474 | 315.7643 | 187.9540|

| HDYS | 5.8701 | 19000.2734 | 21759.6465 | 21759.6465 | 18639.2988|

| IWIK | 2174733.0000 | 868.0000 | 870.0000 | 891.0000 | 800.0000|

+--------+--------------+------------+------------+------------+-----------+

3 rows in set (0.00 sec)

Here‗s the PHP script that formats this mass of data into something more

readable:

<html>

<head></head>

<body>

Target Selection

The sprintf() function returns the result of output formatting, while

theprintf() function prints the result directly to the standard output device.

Dr. M. Sivasankari – PLUNGE INTO PHP

146

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT * FROM stocks";

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

echo '<table border=1 cellpadding=10>';

echo '<tr><td>Stock</td><td>Purchase value</td>';

echo '<td>Sale value</td><td>Profit/Loss</td>';

echo '<td>High/Low</td></tr>';

// iterate over record set

// format and print numeric data

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo '<td>' . $row->symbol . '</td>';

printf('<td align=right>%s</td>', ↵

number_format($row->qty * $row->buy));

printf('<td align=right>%s</td>', ↵

number_format($row->qty * $row->sell));

printf('<td align=right>%s</td>', ↵

number_format($row->qty * ($row->sell - $row->buy)));

printf('<td align=right>%s / %s</td>', ↵

number_format($row->high), number_format($row->low));

Dr. M. Sivasankari – PLUNGE INTO PHP

147

echo '</tr>';

}

echo '</table>';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

 Formatting Currency Values

 This function is designed specifically for use with currency

Rounding Off

If you have a decimal value that you need to round up or down, you can

doit using either PHP or MySQL. MySQL offers the CEIL() and

FLOOR()functions, while PHP offers the round(), ceil(), and floor()

functions.

Take a look at the following examples to see how these functions work:

mysql>SELECT CEIL(12.052),FLOOR(12.052);

+--------------+--------------+

| ceil(12.052) | floor(12.052)|

+--------------+--------------+

| 13 | 12|

Dr. M. Sivasankari – PLUNGE INTO PHP

148

+--------------+--------------+

1 row in set (0.00 sec)

<?php

// returns 13

echo ceil(12.052);

// returns 12

echo floor(12.052);

// returns 12.1

// the second argument specifies ↵

// the number of decimals to round to

echo round(12.052, 1);

?>

 Formatting Dates and Times

PHP offers the date() function,which accepts two arguments: one or

more format specifiers, which indicates howthe timestamp should be

formatted, and the timestamp itself (optional; PHP assumesthe current time

if this second argument is not provided).

To see a few examples of the date() function in action, create and run

thefollowing script:

<?php

// retrieve current date and time

// prints a date and time like "09:18 pm 19 Jun 2004"

echo date("h:i a d M Y", mktime());

// returns just the date "27 April 2003"

echo date("d F Y", mktime(0, 0, 0, 04, 27, 2003));

// returns the time in 24-hr format "21:18"

echo date("H:i", mktime());

?>

Let‗s see an example of this in action. Consider the following database

table,which holds a list of users and their birth dates:

Dr. M. Sivasankari – PLUNGE INTO PHP

149

mysql>SELECT * FROM birthdays;

+-------+------------+

| name | dob |

+-------+------------+

| raoul | 1978-06-04 |

| luis | 1970-11-17 |

| larry | 1971-08-19 |

| moe | 1992-01-23 |

+-------+------------+

4 rows in set (0.00 sec)

Specifier What It Means

d Day of the month; numeric

D Day of the week; short string

F Month of the year; long string

h Hour; numeric 12-hour format

H Hour; numeric 24-hour format

i Minute; numeric

l Day of the week; long string

L Boolean indicating whether it is a leap year

m Month of the year; numeric

M Month of the year; short string

s Seconds; numeric

T Timezone

Y Year; numeric

z Day of the year; numeric

Common Format Specifiers Supported by the date() Function

Now, create and run a PHP script to retrieve these dates and format them

intomore readable values:

<html>

<head></head>

Dr. M. Sivasankari – PLUNGE INTO PHP

150

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT name, UNIX_TIMESTAMP(dob) AS dob FROM

birthdays';

$result = mysql_query($query) or die ('Error in query: $query. ' .

mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// print HTML table

echo '<table border=1 cellpadding=10>';

// iterate over record set

// print each field

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo "<td>$row->name</td><td>" .↵

date("d M Y", $row->dob) . "</td>";

echo '</tr>';

}

echo '</table>';

}

else

{

// print error message

Dr. M. Sivasankari – PLUNGE INTO PHP

151

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

Table demonstrates the specifiers supported by the DATE_FORMAT()

and TIME_FORMAT() functions.

Here are some examples demonstrating these in action:

mysql>SELECT DATE_FORMAT(NOW(), '%W, %D %M %Y %r');

+--+

| DATE_FORMAT(NOW(), '%W, %D %M %Y %r') |

+--+

| Thursday, 18th November 2004 12:07:55 PM |

+--+

1 row in set (0.22 sec)

mysql>SELECT DATE_FORMAT(19980317, '%d/%m/%Y');

+-----------------------------------+

| DATE_FORMAT(19980317, '%d/%m/%Y') |

+-----------------------------------+

| 17/03/1998 |

+-----------------------------------+

1 row in set (0.00 sec)

mysql>SELECT DATE_FORMAT("20011215101030", "%H%ihrs on

%a %d %M %y");

Dr. M. Sivasankari – PLUNGE INTO PHP

152

+--+

| DATE_FORMAT("20011215101030", "%H%ihrs on %a %d %M %y") |

+--+

| 1010 hrs on Sat 15 December 01 |

+--+

1 row in set (0.00 sec)

Formatting dates with the date() function

mysql>SELECT TIME_FORMAT(19690609140256, '%h:%i %p');

+---+

| TIME_FORMAT(19690609140256, '%h:%i %p') |

+---+

| 02:02 PM |

+---+

1 row in set (0.00 sec)

MySQL Date/Time Formatting Codes

Symbol What It Means

%a Short weekday name (Sun, Mon . . .)

%b Short month name (Jan, Feb . . .)

%d Day of the month

%H Hour (01, 02 . . .)

%I Minute (00, 01 . . .)

%j Day of the year (001, 002 . . .)

%m 2-digit month (00, 01 . . .)

%M Long month name (January, February)

%p AM/PM

%r Time in 12-hour format

%S Second (00, 01)

Dr. M. Sivasankari – PLUNGE INTO PHP

153

%T Time in 24-hour format

%w Day of the week (0,1 . . .)

%W Long weekday name (Sunday, Monday . . .)

%Y 4-digit year

<html>

<head></head>

<body>

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') ↵

or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = "SELECT name, DATE_FORMAT(dob, '%d %b %Y') ↵

AS dob FROM birthdays";

$result = mysql_query($query) ↵

or die ('Error in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// print HTML table

echo '<table border=1 cellpadding=10>';

// iterate over record set

// print each field

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo "<td>$row->name</td><td>$row->dob</td>";

echo '</tr>';

Dr. M. Sivasankari – PLUNGE INTO PHP

154

}

echo '</table>';

}

else

{

// print error message

echo 'No rows found!';

}

// once processing is complete

// free result set

mysql_free_result($result);

// close connection to MySQL server

mysql_close($connection);

?>

</body>

</html>

References

1. How to Do Everything with PHP & MySQL – Vikram Vaswani

2. www.tutorialpoint.com

- - - - - -

http://www.tutorialpoint.com/

